首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
M Herold  K Kirschner 《Biochemistry》1990,29(7):1907-1913
The unfolding and dissociation of the dimeric enzyme aspartate aminotransferase (D) from Escherichia coli by guanidine hydrochloride have been investigated at equilibrium. The overall process was reversible, as judged from almost complete recovery of enzymic activity after dialysis of 0.7 mg of denatured protein/mL against buffer. Unfolding and dissociation were monitored by circular dichroism and fluorescence spectroscopy and occurred in three separate phases: D in equilibrium 2M in equilibrium 2M* in equilibrium 2U. The first transition at about 0.5 M guanidine hydrochloride coincided with loss of enzyme activity. It was displaced toward higher denaturant concentrations by the presence of either pyridoxal 5'-phosphate or pyridoxamine 5'-phosphate and toward lower denaturant concentrations by decreasing the protein concentration. Therefore, bound coenzyme stabilizes the dimeric state, and the monomer (M) is inactive because the shared active sites are destroyed by dissociation of the dimer. M was converted to M* and then to the fully unfolded monomer (U) in two subsequent transitions. M* was stable between 0.9 and 1.1 M guanidine hydrochloride and had the hydrodynamic radius, circular dichroism, and fluorescence of a monomeric, compact "molten globule" state.  相似文献   

2.
Neyroz P  Zambelli B  Ciurli S 《Biochemistry》2006,45(29):8918-8930
UreG is an essential protein for the in vivo activation of urease. In a previous study, UreG from Bacillus pasteurii was shown to behave as an intrinsically unstructured dimeric protein. Here, intrinsic and extrinsic fluorescence experiments were performed, in the absence and presence of denaturant, to provide information about the form (fully folded, molten globule, premolten globule, or random coil) that the native state of BpUreG assumes in solution. The features of the emission band of the unique tryptophan residue (W192) located on the C-terminal helix, as well as the rate of bimolecular quenching by potassium iodide, indicated that, in the native state, W192 is protected from the aqueous polar solvent, while upon addition of denaturant, a conformational change occurs that causes solvent exposure of the indole side chain. This structural change, mainly affecting the C-terminal helix, is associated with the release of static quenching, as shown by resolution of the decay-associated spectra. The exposure of protein hydrophobic sites, monitored using the fluorescent probe bis-ANS, indicated that the native dimeric state of BpUreG is disordered even though it maintains a significant amount of tertiary structure. ANS fluorescence also indicated that, upon addition of a small amount of GuHCl, a transition to a molten globule state occurs, followed by formation of a pre-molten globule state at a higher denaturant concentration. The latter form is resistant to full unfolding, as also revealed by far-UV circular dichroism spectroscopy. The hydrodynamic parameters obtained by time-resolved fluorescence anisotropy at maximal denaturant concentrations (3 M GuHCl) confirmed the existence of a disordered but stable dimeric protein core. The nature of the forces holding together the two monomers of BpUreG was investigated. Determination of free thiols in native or denaturant conditions, as well as light scattering experiments in the absence and presence of dithiothreitol as a reducing agent, under native or denaturing conditions, indicates that a disulfide bond, involving the unique conserved cysteine C68, is present under native conditions and maintained upon addition of denaturant. This covalent bond is therefore important for the stabilization of the dimer under native conditions. The intrinsically disordered structure of UreG is discussed with respect to the role of this protein as a chaperone in the urease assembly system.  相似文献   

3.
Mazon H  Marcillat O  Vial C  Clottes E 《Biochemistry》2002,41(30):9646-9653
Proteinase K selectively nicks the native homodimeric muscle creatine kinase (MM-CK) into two 37.1 kDa N-terminal (K1) and two 5.8 kDa C-terminal (K2) fragments that remain firmly associated in a native-like, although inactive, heterotetrameric structure. This truncated protein has been named (K1K2)(2). To analyze the role of the C-terminal peptide in the protein structure acquisition, we studied in vitro refolding of the guanidinium chloride-denatured (K1K2)(2). Although they never reassociate with K2, in selected conditions the K1 fragments refold slowly to a dimeric state as shown by size exclusion chromatography data. This K1 dimer exhibits a fluorescence emission lambda max of 335 nm, a high degree of tyrosine exposure, strongly binds ANS but not MgADP, a CK substrate, and according to these structural characteristics, could be a dimeric molten globule species. We propose a folding model that takes into account the existence of a new transient intermediate state in the MM-CK refolding process. Besides two monomeric premolten and molten globule kinetic intermediates and the active final dimeric form, an inactive dimer, with partly compacted monomers, must ephemerally exist. Our results strongly suggest that the C-terminal end of the protein accelerates folding and plays a critical role for monomer final packing into a native-like conformation. The data also indicate that MM-CK catalytic efficiency is only acquired after dimerization.  相似文献   

4.
The stability versus unfolding to the molten globule intermediate of bovine carbonic anhydrase II (BCA II) in guanidine hydrochloride (GuHCl) was found to depend on the metal ion cofactor [Zn(II) or Co(II)], and the apoenzyme was observed to be least stable. Therefore, it was possible to find a denaturant concentration (1.2 M GuHCl) at which refolding from the molten globule to the native state could be initiated merely by adding the metal ion to the apo molten globule. Thus, refolding could be performed without changing the concentration of the denaturant. The molten globule intermediate of BCA II could still bind the metal cofactor. Cofactor-effected refolding from the molten globule to the native state can be summarized as follows: (1) initially, the metal ion binds to the molten globule; (2) compaction of the metal-binding site region is then induced by the metal ion binding; (3) a functioning active center is formed; and (4) finally, the native tertiary structure is generated in the outer parts of the protein.  相似文献   

5.
Chemical modification with sulfhydryl reagents of the single, nonconserved cysteine residue Cys231 in each subunit of a disulfide-linked dimer of Torpedo californica acetylcholinesterase produces a partially unfolded inactive state. Another partially unfolded state can be obtained by exposure of the enzyme to 1-2 M guanidine hydrochloride. Both these states display several important features of a molten globule, but differ in their spectroscopic (CD, intrinsic fluorescence) and hydrodynamic (Stokes radii) characteristics. With reversal of chemical modification of the former state or removal of denaturant from the latter, both states retain their physiochemical characteristics. Thus, acetylcholinesterase can exist in two molten globule states, both of which are long-lived under physiologic conditions without aggregating, and without either intraconverting or reverting to the native state. Both states undergo spontaneous intramolecular thioldisulfide exchange, implying that they are flexible. As revealed by differential scanning calorimetry, the state produced by chemical modification lacks any heat capacity peak, presumably due to aggregation during scanning, whereas the state produced by guanidine hydrochloride unfolds as a single cooperative unit, thermal transition being completely reversible. Sucrose gradient centrifugation reveals that reduction of the interchain disulfide of the native acetylcholinesterase dimer converts it to monomers, whereas, after such reduction, the two subunits remain completely associated in the partially unfolded state generated by guanidine hydrochloride, and partially associated in that produced by chemical modification. It is suggested that a novel hydrophobic core, generated across the subunit interfaces, is responsible for this noncovalent association. Transition from the unfolded state generated by chemical modification to that produced by guanidine hydrochloride is observed only in the presence of the denaturant, yielding, on extrapolation to zero guanidine hydrochloride, a high free energy barrier (ca. 23.8 kcal/mol) separating these two flexible, partially unfolded states.  相似文献   

6.
The equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model. Unfolding of Cro monomer is well described by the standard two state model. The stability of both forms of protein increases in the presence of salt but decreases with the decrease in pH. Because of the suggested importance of a N2<-->2F dimerization process in DNA binding, we have also studied the effect of sodium perchlorate, containing the chaotropic perchlorate anion, on the conformational transition of Cro dimer by CD, fluorescence and NMR (in addition to urea and guanidine hydrochloride) in an attempt both to characterize the thermodynamics of the process and to identify conditions that lead to an increase in the population of the folded monomers. Data suggest that sodium perchlorate stabilizes the protein at low concentration (<1.5 M) and destabilizes the protein at higher perchlorate concentration with the formation of a "significantly folded" monomer. The tryptophan residue in the "significantly folded" monomer induced by perchlorate is more exposed to the solvent than in native dimer.  相似文献   

7.
Here the structure of human glyoxalase II has been investigated by studying unfolding at equilibrium and refolding. Human glyoxalase II contains two tryptophan residues situated at the N-terminal (Trp57) and C-terminal (Trp199) regions of the molecule. Trp57 is a non-conserved residue located within a "zinc binding motif" (T/SHXHX57DH) which is strictly conserved in all known glyoxalase II sequences as well as in metal-dependent beta-lactamase and arylsulfatase. Site-directed mutagenesis has been used to construct single-tryptophan mutants in order to characterize better the guanidine-induced unfolding intermediates. The denaturation at equilibrium of wild-type glyoxalase II, as followed by activity, intrinsic fluorescence and CD, is multiphasic, suggesting that different regions of varying structural stability characterize the native structure of glyoxalase II. At intermediate denaturant concentration (1.2 M guanidine) a molten globule state is attained. The reactivation of the denatured wild-type enzyme occurs only in the presence of Zn(II) ions. The results show that Zn(II) is essential for the maintenance of the native structure of glyoxalase II and that its binding to the apoenzyme occurs during an essential step of refolding. The comparison of unfolding fluorescence transitions of single-trypthophan mutants with that of wild-type enzyme indicates that the strictly conserved "zinc binding motif" is located in a flexible region of the active site in which Zn(II) participates in catalysis.  相似文献   

8.
The effect of pressure on the unfolding of bovine alpha-lactalbumin was investigated by ultraviolet absorption methods. The change of molar volume associated with unfolding, deltaV, was measured in the presence or absence of guanidine hydrochloride at pH 7. The deltaV was estimated to be -63 cm3/mol in the absence of a chemical denaturant. While in the presence of guanidine hydrochloride (GuHCl), it was found that deltaV was -66 cm3/mol at 25 degrees C and was independent of the concentration of GuHCl, despite the fact that the molten globule fraction in the total unfolding product decreased with the increase of GuHCl concentration. The results indicate that the volume of alpha-lactalbumin only changes at the transition from a native to a molten globule state, and almost no volume change has been found during the transition from a molten globule to the unfolded state.  相似文献   

9.
The denaturation of the dimeric enzyme glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides by guanidine hydrochloride has been studied using enzymatic activity, intrinsic fluorescence, circular dichroism, and light scattering measurements. Equilibrium experiments at 25 degrees C revealed that between 0.9 and 1.2 M denaturant the enzyme underwent a conformational change, exposing tryptophan residues to solvent, with some loss of secondary structure and a complete loss of enzymatic activity but without dimer dissociation to subunits. This inactive, partially unfolded, dimeric intermediate was susceptible to slow aggregation, perhaps due to exposure of 'sticky' hydrophobic stretches of the polypeptide chain. A second equilibrium transition, reflecting extensive unfolding and dimer dissociation, occurred only at denaturant concentrations above 1.4 M. Kinetics experiments demonstrated that in the denaturant concentration range of 1.7-1.9 M the fluorescence change occurred in two distinct steps. The first step involved a large, very rapid drop in fluorescence whose rate was strongly dependent on the denaturant concentration. This was followed by a small, relatively slow rise in the emission intensity, the rate of which was independent of denaturant concentration. Enzymatic activity was lost with a denaturant-concentration-dependent rate, which was approx. 3-times slower than the rate of the first step in fluorescence change. A denaturation mechanism incorporating several unfolding intermediates and which accounts for all the above results is presented and discussed. While the fully unfolded enzyme regained up to 55% of its original activity upon dilution of denaturant to a concentration that would be expected to support native enzyme, denaturation intermediates were able to reactivate only minimally and in fact were found to aggregate and precipitate out of solution.  相似文献   

10.
Guanidine hydrochloride-induced unfolding of a carbonic anhydrase molten globule was studied by high-resolution NMR spectroscopy. The study resulted in estimation of the number of water and denaturant molecules bound to the molten globule at various denaturant concentrations in solution. When compared with the data on unfolding of native carbonic anhydrase, these estimates indicate that the unfolding is underlain by an increased local concentration of the denaturant near the protein molecule, which results from the increased ratio between guanidine hydrochloride-bound and protein-bound waters.  相似文献   

11.
Alpha-1 antitrypsin (alpha(1)-AT) is a member of the serpin class of protease inhibitors, and folds to a metastable state rather than its thermodynamically most stable native state. Upon cleavage by a target protease, alpha(1)-AT undergoes a dramatic conformational change to a stable form, translocating the bound protease more than 70 A to form an inhibitory protease-serpin complex. Numerous mutagenesis studies on serpins have demonstrated the trade-off between the stability of the metastable state on the one hand and the inhibitory efficiency on the other. Studies of the equilibrium unfolding of serpins provide insight into this connection between structural plasticity and metastability. We studied equilibrium unfolding of wild-type alpha(1)-AT using hydrogen-deuterium/exchange mass spectrometry to characterize the structure and the stability of an equilibrium intermediate that was observed in low concentrations of denaturant in earlier studies. Our results show that the intermediate observed at low concentrations of denaturant has no protection from hydrogen-deuterium exchange, indicating a lack of stable structure. Further, differential scanning calorimetry of alpha(1)-AT at low concentrations of denaturant shows no heat capacity peak during thermal denaturation, indicating that the transition from the intermediate to the unfolded state is not a cooperative first-order-like phase transition.. Our results show that the unfolding of alpha(1)-AT involves a cooperative transition to a molten globule form, followed by a non-cooperative transition to a random-coil form as more guanidine is added. Thus, the entire alpha(1)-AT molecule consists of one cooperative structural unit rather than multiple structural domains with different stabilities. Furthermore, our results together with previous mutagenesis studies suggest a possible link between an equilibrium molten globule and a functional intermediate that may be populated during the protease inhibition.  相似文献   

12.
Guanidine hydrochloride-induced unfolding of a carbonic anhydrase molten globule was studied by high-resolution nuclear magnetic resonance spectroscopy. The study resulted in estimation of the number of water and denaturant molecules bound to the molten globule at various denaturant concentrations in solution. When compared with the data on unfolding of native carbonic anhydrase, these estimates indicate that the unfolding is underlain by an increased local concentration of the denaturant near the protein molecule, which results from the increased ratio between guanidine hydrochloride-bound and protein-bound waters.  相似文献   

13.
Glucoamylase 1 (GA1) from Aspergillus niger is a multidomain starch hydrolysing enzyme that consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated linker. The fungus also produces a truncated form without the starch-binding domain (GA2). The active site mutant Trp(52)-->Phe of both forms and the Asp(55)-->Val mutant of the GA1 form have been prepared and physicochemically characterised and compared to recombinant wild-type enzymes. The characterisation included substrate hydrolysis, inhibitor binding, denaturant stability, and thermal stability, and the consequences for the active site of glucoamylase are discussed. The circular dichroic (CD) spectra of the mutants were very similar to the wild-type enzymes, indicating that they have similar tertiary structures. The D55V GA1 mutant showed slower kinetics of hydrolysis of maltose and maltoheptaose with delta delta G(double dagger) congruent with 22 kJ mol(-1), whereas the binding of the strong inhibitor acarbose was greatly diminished by delta delta G degrees congruent with 52 kJ mol(-1). Both W52F mutant forms have almost the same stability as the wild-type enzyme, whereas the D55V GA1 mutant showed slight destabilisation both towards denaturant and heat (DSC). The difference between the CD unfolding curves recorded by near- and far-UV indicated that D55V GA1 unfolds through a molten globule intermediate.  相似文献   

14.
Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to mutations. The disease marble brain syndrome (MBS), known also as carbonic anhydrase II deficiency syndrome (CADS), can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. One mutation associated with MBS entails the His107Tyr substitution. Here, we demonstrate that this mutation is a remarkably destabilizing folding mutation. The loss-of-function is clearly a folding defect, since the mutant shows 64% of CO(2) hydration activity compared to that of the wild-type at low temperature where the mutant is folded. On the contrary, its stability towards thermal and guanidine hydrochloride (GuHCl) denaturation is highly compromised. Using activity assays, CD, fluorescence, NMR, cross-linking, aggregation measurements and molecular modeling, we have mapped the properties of this remarkable mutant. Loss of enzymatic activity had a midpoint temperature of denaturation (T(m)) of 16 degrees C for the mutant compared to 55 degrees C for the wild-type protein. GuHCl-denaturation (at 4 degrees C) showed that the native state of the mutant was destabilized by 9.2kcal/mol. The mutant unfolds through at least two equilibrium intermediates; one novel intermediate that we have termed the molten globule light state and, after further denaturation, the classical molten globule state is populated. Under physiological conditions (neutral pH; 37 degrees C), the His107Tyr mutant will populate the molten globule light state, likely due to novel interactions between Tyr107 and the surroundings of the critical residue Ser29 that destabilize the native conformation. This intermediate binds the hydrophobic dye 8-anilino-1-naphthalene sulfonic acid (ANS) but not as strong as the molten globule state, and near-UV CD reveals the presence of significant tertiary structure. Notably, this intermediate is not as prone to aggregation as the classical molten globule. As a proof of concept for an intervention strategy with small molecules, we showed that binding of the CA inhibitor acetazolamide increases the stability of the native state of the mutant by 2.9kcal/mol in accordance with its strong affinity. Acetazolamide shifts the T(m) to 34 degrees C that protects from misfolding and will enable a substantial fraction of the enzyme pool to survive physiological conditions.  相似文献   

15.
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.  相似文献   

16.
Cervoni L  Egistelli L  Mocan I  Giartosio A  Lascu I 《Biochemistry》2003,42(49):14599-14605
Multimeric enzymes that lose their quaternary structure often cease to be catalytically competent. In these cases, conformational stability depends on contacts between subunits, and minor mutations affecting the surface of the monomers may affect overall stability. This effect may be sensitive to pH, temperature, or solvent composition. We investigated the role of oligomeric structure in protein stability by heat and chemical denaturation of hexameric nucleoside diphosphate kinase from Dictyostelium discoideum and its P105G mutant over a wide range of pH. The wild-type enzyme has been reported to unfold without prior dissociation into monomers, whereas monomer unfolding follows dissociation for the P105G mutant (Giartosio et al. (1996) J. Biol. Chem. 271, 17845-51). We show here that these features are also preserved at alkaline pH, with the wild-type enzyme always hexameric at room temperature whereas the mutant dissociates into monomers at pH >or=10. In acidic conditions (pH 相似文献   

17.
pH and chemical denaturant dependent conformational changes of a serine protease cryptolepain from Cryptolepis buchanani are presented in this paper. Activity measurements, near UV, far UV CD, fluorescence emission spectroscopy, and ANS binding studies have been carried out to understand the folding mechanism of the protein in the presence of denaturants. pH and chemical denaturants have a marked effect on the stability, structure, and function of many globular proteins due to their ability to influence the electrostatic interactions. The preliminary biophysical study on cryptolepain shows that major elements of secondary structure are beta-sheets. Under neutral conditions the enzyme was stable in urea while GuHCl-induced equilibrium unfolding was cooperative. Cryptolepain shows little ANS binding even under neutral conditions due to more hydrophobicity of beta-sheets. Multiple intermediates were populated during the pH-induced unfolding of cryptolepain. Temperature-induced denaturation of cryptolepain in the molten globule like state is non-cooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts, possibly domains, in the molecular structure of cryptolepain, with different stability that unfolds in steps. Interestingly, the GuHCl-induced unfolding of A state (molten globule state) of cryptolepain is unique, as lower concentration of denaturant, not only induces structure but also facilitate transition from one molten globule like state (MG(1)) into another (MG(2)). The increase of pH drives the protein into alkaline denatured state characterized by the absence of any ANS binding. GuHCl- and urea-induced unfolding transition curves at pH 12.0 were non-coincidental indicating the presence of an intermediate in the unfolding pathway.  相似文献   

18.
The blood coagulation protein factor XI (FXI) consists of a pair of disulfide-linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; F272-E362) mediates non-covalent homodimer formation even when the cysteine involved in an intersubunit disulfide is mutated to serine (C321S). To understand the role of non-covalent interactions stabilizing the FXI dimer, equilibrium unfolding of wild-type A4 and its C321S variant was monitored by circular dichroism, intrinsic tyrosine fluorescence and dynamic light scattering measurements as a function of guanidine hydrochloride concentration. Global analysis of the unimolecular unfolding transition of wild-type A4 revealed a partially unfolded equilibrium intermediate at low to moderate denaturant concentrations. The optically detected equilibrium of C321S A4 also fits best to a three-state model in which the native dimer unfolds via a monomeric intermediate state. Dimer dissociation is characterized by a dissociation constant, K(d), of approximately 90 nM (in terms of monomer), which is in agreement with the dissociation constant measured independently using fluorescence anisotropy. The results imply that FXI folding occurs via a monomeric equilibrium intermediate. This observation sheds light on the effect of certain naturally occurring mutations, such as F283L, which lead to intracellular accumulation of non-native forms of FXI. To investigate the structural and energetic consequences of the F283L mutation, which perturbs a cluster of aromatic side-chains within the core of the A4 monomer, it was introduced into the dissociable dimer, C321S A4. NMR chemical shift analysis confirmed that the mutant can assume a native-like dimeric structure. However, equilibrium unfolding measurements show that the mutation causes a fourfold increase in the K(d) value for dissociation of the native dimer and a 1 kcal/mol stabilization of the monomer, resulting in a highly populated intermediate. Since the F283 side-chain does not directly participate in the dimer interface, we propose that the F283L mutation leads to increased dimer dissociation by stabilizing a monomeric state with altered side-chain packing that is unfavorable for homodimer formation.  相似文献   

19.
The involvement of molten globule state as a distinct intermediate in the denaturation process in proteins is well documented. However, the structural characterization of such an intermediate is far from complete. We have, using fluorescence and fluorescence quenching, studied the molten globule state of bovine alpha-lactalbumin. Unlike the native state, where all the 4 tryptophans are buried in the protein, 2 tryptophans are exposed in the molten globule state. Using the hydrophobic photoactivable reagent [3H]diazofluorene, we observe an increased hydrophobic exposure in the molten globule state. These structural characteristics conform to the current views on the molten globule state, i.e. it has similar secondary structure but a poorly defined tertiary structure. Our fluorescence studies indicate the involvement of a premolten globule state in the native to molten globule state transition. This premolten globule state exists at pH 5.0 and has a very compact structure involving increased hydrophobic interactions in the protein interior. These results are also supported by circular dichroism studies.  相似文献   

20.
Water-soluble quinoprotein glucose dehydrogease (PQQGDH-B) is a dimeric enzyme whose application for glucose sensing is the focus of much attention. We attempted to increase the thermal stability of PQQGDH-B by introducing a disulfide bond at the dimer interface. The Ser residue at position 415 was selected for substitution with Cys, as structural information revealed that its side chains face each other at the dimer interface of PQQGDH-B. PQQGDH-B with Ser415Cys showed 30-fold greater thermal stability at 55°C than did the wild-type enzyme without any decrease in catalytic activity. After incubation at 70°C for 10 min, Ser415Cys retained 90% of the GDH activity of the wild-type enzyme. Disulfide bond formation between the mutant subunits was confirmed by analyses with sodium dodecylsulfate-polyacrylamide gel electrophoresis in the presence and absence of reductants. Our results indicate that the introduction of one Cys residue in each monomer of PQQGDH-B resulted in formation of a disulfide bond at the dimer interface and thus achieved a large increase in the thermal stability of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号