首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
We show that long- and short-range interactions in almost all protein native structures are actually consistent with each other for coarse-grained energy scales; specifically we mean the long-range inter-residue contact energies and the short-range secondary structure energies based on peptide dihedral angles, which are potentials of mean force evaluated from residue distributions observed in protein native structures. This consistency is observed at equilibrium in sequence space rather than in conformational space. Statistical ensembles of sequences are generated by exchanging residues for each of 797 protein native structures with the Metropolis method. It is shown that adding the other category of interaction to either the short- or long-range interactions decreases the means and variances of those energies for essentially all protein native structures, indicating that both interactions consistently work by more-or-less restricting sequence spaces available to one of the interactions. In addition to this consistency, independence by these interaction classes is also indicated by the fact that there are almost no correlations between them when equilibrated using both interactions and significant but small, positive correlations at equilibrium using only one of the interactions. Evidence is provided that protein native sequences can be regarded approximately as samples from the statistical ensembles of sequences with these energy scales and that all proteins have the same effective conformational temperature. Designing protein structures and sequences to be consistent and minimally frustrated among the various interactions is a most effective way to increase protein stability and foldability.  相似文献   

3.
    
Reich L  Weikl TR 《Proteins》2006,63(4):1052-1058
According to the \"old view,\" proteins fold along well-defined sequential pathways, whereas the \"new view\" sees protein folding as a highly parallel stochastic process on funnel-shaped energy landscapes. We have analyzed parallel and sequential processes on a large number of molecular dynamics unfolding trajectories of the protein CI2 at high temperatures. Using rigorous statistical measures, we quantify the degree of sequentiality on two structural levels. The unfolding process is highly parallel on the microstructural level of individual contacts. On a coarser, macrostructural level of contact clusters, characteristic parallel and sequential events emerge. These characteristic events can be understood from loop-closure dependencies between the contact clusters. A correlation analysis of the unfolding times of the contacts reveals a high degree of substructural cooperativity within the contact clusters.  相似文献   

4.
    
Okumura H 《Proteins》2012,80(10):2397-2416
A multibaric‐multithermal molecular dynamics (MD) simulation of a 10‐residue protein, chignolin, was performed. All‐atom model with the Amber parm99SB force field was used for the protein and the TIP3P model was used for the explicit water molecules. This MD simulation covered wide ranges of temperature between 260 and 560 K and pressure between 0.1 and 600 MPa and sampled many conformations without getting trapped in local‐minimum free‐energy states. Folding events to the native β‐hairpin structure occurred five times and unfolding events were observed four times. As the temperature and/or pressure increases, fraction of folded chignolin decreases. The partial molar enthalpy change ΔH and partial molar volume change ΔV of unfolding were calculated as ΔH = 24.1 ± 4.9 kJ/mol and ΔV = ?5.6 ± 1.5 cm3/mol, respectively. These values agree well with recent experimental results. Illustrating typical local‐minimum free‐energy conformations, folding and unfolding pathways were revealed. When chignolin unfolds from the β‐hairpin structure, only the C terminus or both C and N termini open first. It may undergo an α‐helix or 310‐helix structure and finally unfolds to the extended structure. Difference of the mechanism between temperature denaturation and pressure denaturation is also discussed. Temperature denaturation is caused by making the protein transferred to a higher entropy state and making it move around more with larger space. The reason for pressure denaturation is that water molecules approach the hydrophobic residues, which are not well hydrated at the folded state, and some hydrophobic contacts are broken. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
    
Ruller R  Deliberto L  Ferreira TL  Ward RJ 《Proteins》2008,70(4):1280-1293
Directed evolution techniques have been used to improve the thermal stability of the xylanase A from Bacillus subtilis (XylA). Two generations of random mutant libraries generated by error prone PCR coupled with a single generation of DNA shuffling produced a series of mutant proteins with increasing thermostability. The most Thermostable XylA variant from the third generation contained four mutations Q7H, G13R, S22P, and S179C that showed an increase in melting temperature of 20 degrees C. The thermodynamic properties of a representative subset of nine XylA variants showing a range of thermostabilities were measured by thermal denaturation as monitored by the change in the far ultraviolet circular dichroism signal. Analysis of the data from these thermostable variants demonstrated a correlation between the decrease in the heat capacity change (deltaC(p)) with an increase in the midpoint of the transition temperature (T(m)) on transition from the native to the unfolded state. This result could not be interpreted within the context of the changes in accessible surface area of the protein on transition from the native to unfolded states. Since all the mutations are located at the surface of the protein, these results suggest that an explanation of the decrease in deltaC(p) should include effects arising from the protein/solvent interface.  相似文献   

6.
    
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

7.
    
Beta-turns are sites at which proteins change their overall chain direction, and they occur with high frequency in globular proteins. The Protein Data Bank has many instances of conformations that resemble beta-turns but lack the characteristic N-H(i) --> O=C(i - 3) hydrogen bond of an authentic beta-turn. Here, we identify potential hydrogen-bonded beta-turns in the coil library, a Web-accessible database utility comprised of all residues not in repetitive secondary structure, neither alpha-helix nor beta-sheet (http://www.roselab.jhu.edu/coil). In particular, candidate turns were identified as four-residue segments satisfying highly relaxed geometric criteria but lacking a strictly defined hydrogen bond. Such candidates were then subjected to a minimization protocol to determine whether slight changes in torsion angles are sufficient to shift the conformation into reference-quality geometry without deviating significantly from the original structure. This approach of applying constrained minimization to known structures reveals a substantial population of previously unidentified, stringently defined, hydrogen-bonded beta-turns. In particular, 33% of coil library residues were classified as beta-turns prior to minimization. After minimization, 45% of such residues could be classified as beta-turns, with another 8% in 3(10) helixes (which closely resemble type III beta-turns). Of the remaining coil library residues, 37% have backbone dihedral angles in left-handed polyproline II structure.  相似文献   

8.
    
Favrin G  Irbäck A  Wallin S 《Proteins》2002,47(2):99-105
A reduced protein model with five to six atoms per amino acid and five amino acid types is developed and tested on a three-helix-bundle protein, a 46-amino acid fragment from staphylococcal protein A. The model does not rely on the widely used Go approximation, which ignores non-native interactions. We find that the collapse transition is considerably more abrupt for the protein A sequence than for random sequences with the same composition. The chain collapse is found to be at least as fast as helix formation. Energy minimization restricted to the thermodynamically favored topology gives a structure that has a root-mean-square deviation of 1.8 A from the native structure. The sequence-dependent part of our potential is pairwise additive. Our calculations suggest that fine-tuning this potential by parameter optimization is of limited use.  相似文献   

9.
    
The TEM-1 β-lactamase is a globular protein containing 12 proline residues. The folding mechanism of this enzyme was investigated by kinetic and equilibrium experiments with the help of fluorescence spectroscopy and circular dichroism. The equilibrium denaturation of the protein induced by guanidine hydrochloride occurs in two discrete steps, indicating the existence of a thermodynamically stable intermediate state. Thisstate is 5.2 ± 0.4 kcal/mol less stable than the native conformation and 5.7 ± 0.2 kcal/mol more stable than the fully denaturedprotein. This intermediate state exhibits a high content of native secondary structure elements but is devoid of specific tertiary organization; its relation to the “molten globule” is discussed. Refolding kinetic experimentsrevealed the existence of a transient intermediate conformation between thethermodynamically stable intermediate and the native protein. This transient intermediate appears rapidly during the folding reaction. It exhibits a secondary structure content very similar to that of the native protein and has also recovered a significant amount of tertiary organisation. The final refolding step of the TEM-1 β-lactamase, leading to the native enzyme, is dominated by two major slow kinetic phases which probablyreflect a very complex process kinetically limited by proline cis/transisomerization. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

11.
    
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular dynamics, threading, greedy, and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like states for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.  相似文献   

12.
Cold and heat denaturation of the double mutant Arg 3→Glu/Leu 66→Glu of cold shock protein Csp of Bacillus caldolyticus was monitored using 1D 1H NMR spectroscopy in the temperature range from −12°C in supercooled water up to +70°C. The fraction of unfolded protein, f u, was determined as a function of the temperature. The data characterizing the unfolding transitions could be consistently interpreted in the framework of two-state models: cold and heat denaturation temperatures were determined to be −11°C and 39°C, respectively. A joint fit to both cold and heat transition data enabled the accurate spectroscopic determination of the heat capacity difference between native and denatured state, ΔC p of unfolding. The approach described in this letter, or a variant thereof, is generally applicable and promises to be of value for routine studies of protein folding.  相似文献   

13.
The stability and kinetics of unfolding and refolding of the P167T mutant of the TEM-1 β-lactamase have been investigated as a function of guanidine hydrochloride concentration. The activity of the mutant enzyme was not significantly modified, which strongly suggests that the Glu166–Thr167 peptide bond, like the Glu166–Pro167, is cis. The mutation, however, led to a significant decrease in the stability of the native state relative to both the thermodynamically stable intermediate and the fully unfolded state of the protein. In contrast to the two slower phases seen in the refolding of the wild-type enzyme, only one phase was detected in the refolding of the mutant, indicating a determining role of proline 167 in the kinetics of folding of the wild-type enzyme. The former phases are replaced by rapid refolding when the enzyme is unfolded for short periods of time, but the latter is independent of the time of unfolding. The monophasic refolding reaction of the mutant is proposed to reflect mainly the transcis isomerization of the Glu166–Thr167 peptide bond. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The hydrophobic/polar HP model on the square lattice has been widely used toinvestigate basics of protein folding. In the cases where all designing sequences (sequences with unique ground states) were enumerated without restrictions on the number of contacts, the upper limit on the chain length N has been 18–20 because of the rapid exponential growth of thenumbers of conformations and sequences. We show how a few optimizations push this limit by about 5 units. Based on these calculations, we study the statistical distribution of hydrophobicity along designing sequences. We find that the average number of hydrophobic and polar clumps along the chains is larger for designing sequences than for random ones, which is in agreement with earlier findings for N 18 and with results for real enzymes. We also show that this deviation from randomness disappears if the calculations are restricted to maximally compact structures.  相似文献   

15.
Extensive measurements and analysis of thermodynamic stability and kinetics of urea-induced unfolding and folding of hisactophilin are reported for 5-50 degrees C, at pH 6.7. Under these conditions hisactophilin has moderate thermodynamic stability, and equilibrium and kinetic data are well fit by a two-state transition between the native and the denatured states. Equilibrium and kinetic m values decrease with increasing temperature, and decrease with increasing denaturant concentration. The betaF values at different temperatures and urea concentrations are quite constant, however, at about 0.7. This suggests that the transition state for hisactophilin unfolding is native-like and changes little with changing solution conditions, consistent with a narrow free energy profile for the transition state. The activation enthalpy and entropy of unfolding are unusually low for hisactophilin, as is also the case for the corresponding equilibrium parameters. Conventional Arrhenius and Eyring plots for both folding and unfolding are markedly non-linear, but these plots become linear for constant DeltaG/T contours. The Gibbs free energy changes for structural changes in hisactophilin have a non-linear denaturant dependence that is comparable to non-linearities observed for many other proteins. These non-linearities can be fit for many proteins using a variation of the Tanford model, incorporating empirical quadratic denaturant dependencies for Gibbs free energies of transfer of amino acid constituents from water to urea, and changes in fractional solvent accessible surface area of protein constituents based on the known protein structures. Noteworthy exceptions that are not well fit include amyloidogenic proteins and large proteins, which may form intermediates. The model is easily implemented and should be widely applicable to analysis of urea-induced structural transitions in proteins.  相似文献   

16.
Using highly purified recombinant human prorenin, we report the first evidence for the formation of a stable, partially active, conformational variant of the recombinant proenzyme. The enzymatically active prorenin exhibits the following characteristics: (1) the proenzyme N-terminal sequence and molecular weight are maintained; (2) the active proenzyme is capable of cleaving a novel fluorogenic peptide substrate based on the sequence of human angiotensinogen and exhibits about 30% of mature renin specific activity for the fluorogenic substrate; (3) the active proenzyme conformation binds to, and can be eluted from, a pepstatin affinity column; and (4) the activity of the active proenzyme can be inhibited by a novel peptidomimetic renin inhibitor.  相似文献   

17.
    
Favrin G  Irbäck A  Wallin S 《Proteins》2004,54(1):8-12
Z(SPA-1) is an engineered protein that binds to its parent, the three-helix-bundle Z domain of staphylococcal protein A. Uncomplexed Z(SPA-1) shows a reduced helix content and a melting behavior that is less cooperative, compared with the wild-type Z domain. Here we show that the difference in folding behavior between these two sequences can be partly understood in terms of an off-lattice model with 5-6 atoms per amino acid and a minimalistic potential, in which folding is driven by backbone hydrogen bonding and effective hydrophobic attraction.  相似文献   

18.
19.
The current state of the problem of protein folding is reviewed with special attention to the novel molten globule state of the protein molecule, intermediate between the native and unfolded states. Experimental evidence on the existence of this state and its role in protein folding are compared with the sequential model of protein folding proposed by the author in 1972–1973.  相似文献   

20.
    
Rashin AA  Rashin AH 《Proteins》2007,66(2):321-341
Two-dimensional lattice protein models were studied in two approximations of the conformational equilibrium to elucidate the role of surface hydrophobic groups in their stabilities. We demonstrate that stability of any compactly folded sequence is determined by its ability to \"flip-flop\" (refold) into alternative compact structures. The degree of stability required for folded sequences determines the average numbers of surface hydrophobic groups in stable lattice structures which are in good agreement with ratios of core to surface hydrophobic groups in real proteins. However, the average destabilization of the native structure per surface hydrophobic group is small (0-0.25 kcal/mol), often disagrees with the free energies derived from the ratios of core to surface hydrophobic groups in the same structures, and has a combinatorial entropic nature independent of the strength of structure stabilizing interactions. This suggests that the free energies derived from the core to surface ratios of hydrophobic groups in real proteins have little to do with folding thermodynamics. On average, sequences with highly stable native structures are the least hydrophobic. The results suggest that in designing novel stable proteins hydrophobic groups on the surface should be avoided to reduce the possibility of flip-flopping. The average stability of highly designable structures is never higher than that of some low designability structures, contrary to the accepted view. In the equilibrium approximation with alternative compact and partially unfolded structures, the requirement of high stability selects a unique 5 x 5 structure formed by only a few sequences, suggesting much stronger sequence selectivity than commonly thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号