首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

2.
Cytochrome c oxidase is a large intrinsic membrane protein designed to use the energy of electron transfer and oxygen reduction to pump protons across a membrane. The molecular mechanism of the energy conversion process is not understood. Other proteins with simpler, better resolved structures have been more completely defined and offer insight into possible mechanisms of proton transfer in cytochrome c oxidase. Important concepts that are illustrated by these model systems include the ideas of conformational change both close to and at a distance from the triggering event, and the formation of a transitory water-linked proton pathway during a catalytic cycle. Evidence for the applicability of these concepts to cytochrome c oxidase is discussed.  相似文献   

3.
We present a molecular dynamics study of cytochrome c oxidase from Paracoccus denitrificans in the fully oxidized state, embedded in a fully hydrated dimyristoylphosphatidylcholine lipid bilayer membrane. Parallel simulations with different levels of protein hydration, 1.125 ns each in length, were carried out under conditions of constant temperature and pressure using three-dimensional periodic boundary conditions and full electrostatics to investigate the distribution and dynamics of water molecules and their corresponding hydrogen-bonded networks inside cytochrome c oxidase. The majority of the water molecules had residence times shorter than 100 ps, but a few water molecules are fixed inside the protein for up to 1.125 ns. The hydrogen-bonded network in cytochrome c oxidase is not uniformly distributed, and the degree of water arrangement is variable. The average number of solvent sites in the proton-conducting K- and D-pathways was determined. In contrast to single water files in narrow geometries we observe significant diffusion of individual water molecules along these pathways. The highly fluctuating hydrogen-bonded networks, combined with the significant diffusion of individual water molecules, provide a basis for the transfer of protons in cytochrome c oxidase, therefore leading to a better understanding of the mechanism of proton pumping.  相似文献   

4.
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies.  相似文献   

5.
In mitochondria and many aerobic bacteria cytochrome c oxidase is the terminal enzyme of the respiratory chain where it catalyses the reduction of oxygen to water. The free energy released in this process is used to translocate (pump) protons across the membrane such that each electron transfer to the catalytic site is accompanied by proton pumping. To investigate the mechanism of electron-proton coupling in cytochrome c oxidase we have studied the pH-dependence of the kinetic deuterium isotope effect of specific reaction steps associated with proton transfer in wild-type and structural variants of cytochrome c oxidases in which amino-acid residues in proton-transfer pathways have been modified. In addition, we have solved the structure of one of these mutant enzymes, where a key component of the proton-transfer machinery, Glu286, was modified to an Asp. The results indicate that the P3-->F3 transition rate is determined by a direct proton-transfer event to the catalytic site. In contrast, the rate of the F3-->O4 transition, which involves simultaneous electron transfer to the catalytic site and is characteristic of any transition during CytcO turnover, is determined by two events with similar rates and different kinetic isotope effects. These reaction steps involve transfer of protons, that are pumped, via a segment of the protein including Glu286 and Arg481.  相似文献   

6.
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

7.
Cytochrome c oxidase is an efficient energy transducer that reduces oxygen to water and converts the released chemical energy into an electrochemical membrane potential. As a true proton pump, cytochrome c oxidase translocates protons across the membrane against this potential. Based on a wealth of experiments and calculations, an increasingly detailed picture of the reaction intermediates in the redox cycle has emerged. However, the fundamental mechanism of proton pumping coupled to redox chemistry remains largely unresolved. Here we examine and extend a kinetic master-equation approach to gain insight into redox-coupled proton pumping in cytochrome c oxidase. Basic principles of the cytochrome c oxidase proton pump emerge from an analysis of the simplest kinetic models that retain essential elements of the experimentally determined structure, energetics, and kinetics, and that satisfy fundamental physical principles. The master-equation models allow us to address the question of how pumping can be achieved in a system in which all reaction steps are reversible. Whereas proton pumping does not require the direct modulation of microscopic reaction barriers, such kinetic gating greatly increases the pumping efficiency. Further efficiency gains can be achieved by partially decoupling the proton uptake pathway from the active-site region. Such a mechanism is consistent with the proposed Glu valve, in which the side chain of a key glutamic acid shuttles between the D channel and the active-site region. We also show that the models predict only small proton leaks even in the absence of turnover. The design principles identified here for cytochrome c oxidase provide a blueprint for novel biology-inspired fuel cells, and the master-equation formulation should prove useful also for other molecular machines. .  相似文献   

8.
Cytochrome c oxidase is the terminal electron acceptor in the respiratory chains of aerobic organisms and energetically couples the reduction of oxygen to water to proton pumping across the membrane. The mechanisms of proton uptake, gating, and pumping have yet to be completely elucidated at the molecular level for these enzymes. For Rhodobacter sphaeroides CytcO (cytochrome aa3), it appears as though the E286 side chain of subunit I is a branching point from which protons are shuttled either to the catalytic site for O2 reduction or to the acceptor site for pumped protons. Amide hydrogen-deuterium exchange mass spectrometry was used to investigate how mutation of this key branching residue to histidine (E286H) affects the structures and dynamics of four redox intermediate states. A functional characterization of this mutant reveals that E286H CytcO retains approximately 1% steady-state activity that is uncoupled from proton pumping and that proton transfer from H286 is significantly slowed. Backbone amide H-D exchange kinetics indicates that specific regions of CytcO, perturbed by the E286H mutation, are likely to be involved in proton gating and in the exit pathway for pumped protons. The results indicate that redox-dependent conformational changes around E286 are essential for internal proton transfer. E286H CytcO, however, is incapable of these specific conformational changes and therefore is insensitive to the redox state of the enzyme. These data support a model where the side chain conformation of E286 controls proton translocation in CytcO through its interactions with the proton gate, which directs the flow of protons either to the active site or to the exit pathway. In the E286H mutant, the proton gate does not function properly and the exit channel is unresponsive. These results provide new insight into the structure and mechanism of proton translocation by CytcO.  相似文献   

9.
Evidence is available showing that the coupling efficiency of the proton pump in cytochrome c oxidase of mitochondria can under certain conditions decrease significantly below the maximum attainable value. The view is developed that slips in the proton pump of cytochrome c oxidase represent an intrinsic switch mechanism which regulates the relative contribution of energy transfer and respiratory protection against oxygen toxicity by the oxidase.  相似文献   

10.
Cytochrome oxidase: pathways for electron tunneling and proton transfer   总被引:1,自引:0,他引:1  
 Electrons from cytochrome c, the substrate of cytochrome oxidase, a redox-linked proton pump, are accepted by CuA in subunit II. From there they are transferred to the proton pumping machinery in subunit I, cytochrome a and cytochrome a 3–CuB. The reduction of the latter site, which is the dioxygen reducing unit, is coupled to proton uptake. Dioxygen reduction involves a peroxide and a ferryl ion intermediate, and it is the transition between these and back to the resting oxidized enzyme that are coupled to proton pumping. The X-ray structures suggest electron–transfer pathways that can account for the observed rates provided that the reorganization energies are small. They also reveal two proton-transfer pathways, and mutagenesis experiments have shown that one is used for proton uptake during the initial reduction of cytochrome a 3–CuB, whereas the other mediates transfer of the pumped protons. Received: 23 March 1998 / Accepted: 11 May 1998  相似文献   

11.
Michel H 《Biochemistry》1999,38(46):15129-15140
Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water, a process in which four electrons, four protons, and one molecule of oxygen are consumed. The reaction is coupled to the pumping of four additional protons across the membrane. According to the currently accepted concept, the pumping of all four protons occurs after the binding of oxygen to the reduced enzyme and is exclusively coupled to the last two electron transfer steps. A careful analysis of the existing data shows that there is no experimental evidence for this paradigm. It is more likely that only three protons are pumped during the second half of the catalytic cycle of cytochrome c oxidase after the reaction with oxygen. In this article a variant of a recent mechanistic model of proton pumping by electrostatic repulsion is discussed. It is based on the electroneutrality principle in a way that in the catalytic cycle each electron transfer to the membrane-embedded electron acceptors is charge-compensated by uptake of one proton. The mechanism takes into account the findings with mutant cytochrome c oxidases and explains the results of many recent experiments, including the effects of hydrogen peroxide.  相似文献   

12.
The transient kinetics of proton pumping and the electron transfer properties of cytochrome oxidase inserted into small unilamellar vesicles have been investigated by stopped-flow spectrophotometry. In the presence of valinomycin, proton pumping and cytochrome c oxidation by cytochrome oxidase are synchronous up to rate constants of approximately 9 sec-1. Moreover, the enzyme depleted of subunit III ("three-less oxidase") was also shown to pump protons, although with a significantly smaller stoichiometry. Thus, subunit III is not the only (or even the main) proton channel, although it may be involved in the regulation of activity. The kinetics of cytochrome c oxidation by COV in the absence and in the presence of ionophores have been investigated. Analysis of the time course of the process in the transient and steady state phases indicates that the onset of control by the electrochemical gradient follows the transfer of four electrons, i.e., one complete turnover of the oxidase. Two possible alternative interpretations for the control of the turnover phase are presented and discussed.  相似文献   

13.
Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously.  相似文献   

14.
The cytochrome d complex from Escherichia coli has been reconstituted in proteoliposomes. Previous studies have shown that the enzyme rapidly oxidizes ubiquinol-8 within the bilayer as well as the soluble homologue, ubiquinol-1, and that quinol oxidase activity is accompanied by the formation of a transmembrane potential across the vesicle bilayer. In this work, the proton pumping activity of the cytochrome in the reconstituted vesicles is examined. Ubiquinol-1 oxidase activity is shown to be accompanied by the net alkalinization of the interior space of the reconstituted vesicles and by the release of protons in the external volume. H+/O ratios varying from 0.6 to 1.2 were measured in different preparations, by the oxygen pulse technique. Antibodies which bind specifically to subunit I (cytochrome b558) of the 2-subunit oxidase were used to estimate the topology of the reconstituted oxidase in the vesicles. It was concluded that 70-85% of the molecules were oriented with subunit I facing the outside and that this population of molecules is responsible for the observed proton release. Correction for the fraction of the oxidase which pumps protons into the vesicle interior yields an estimate of H+/O = 1.7 +/- 0.2. It is proposed that the enzyme does not function as an actual proton pump, but that the enzyme oxidizes ubiquinol and reduces oxygen (to water) on opposite faces of the membrane. Hence, scalar chemistry would yield H+/O = 2 and an electrogenic reaction by virtue of the transmembrane electron transfer between the proposed active sites.  相似文献   

15.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

16.
《BBA》2014,1837(12):1998-2003
The metabolism of aerobic life uses the conversion of molecular oxygen to water as an energy source. This reaction is catalyzed by cytochrome c oxidase (CcO) consuming four electrons and four protons, which move along specific routes. While all four electrons are transferred via the same cofactors to the binuclear reaction center (BNC), the protons take two different routes in the A-type CcO, i.e., two of the four chemical protons consumed in the reaction arrive via the D-channel in the oxidative first half starting after oxygen binding. The other two chemical protons enter via the K-channel in the reductive second half of the reaction cycle. To date, the mechanism behind these separate proton transport pathways has not been understood.In this study, we propose a model that can explain the reaction-step specific opening and closing of the K-channel by conformational and pKA changes of its central lysine 362. Molecular dynamics simulations reveal an upward movement of Lys362 towards the BNC, which had already been supposed by several experimental studies. Redox state-dependent pKA calculations provide evidence that Lys362 may protonate transiently, thereby opening the K-channel only in the reductive second half of the reaction cycle. From our results, we develop a model that assigns a key role to Lys362 in the proton gating between the two proton input channels of the A-type CcO.  相似文献   

17.
Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.  相似文献   

18.
Asparagine 131, located near the cytoplasmic entrance of the D-pathway in subunit I of the Paracoccus denitrificans aa(3) cytochrome c oxidase, is a residue crucial for proton pumping. When replaced by an aspartate, the mutant enzyme is completely decoupled: while retaining full cytochrome c oxidation activity, it does not pump protons. The same phenotype is observed for two other substitutions at this position (N131E and N131C), whereas a conservative replacement by glutamine affects both activities of the enzyme. The N131D variant oxidase was crystallized and its structure was solved to 2.32-A resolution, revealing no significant overall change in the protein structure when compared with the wild type (WT), except for an alternative orientation of the E278 side chain in addition to its WT conformation. Moreover, remarkable differences in the crystallographically resolved chain of water molecules in the D-pathway are found for the variant: four water molecules that are observed in the water chain between N131 and E278 in the WT structure are not visible in the variant, indicating a higher mobility of these water molecules. Electrochemically induced Fourier transform infrared difference spectra of decoupled mutants confirm that the protonation state of E278 is unaltered by these mutations but indicate a distinct perturbation in the hydrogen-bonding environment of this residue. Furthermore, they suggest that the carboxylate side chain of the N131D mutant is deprotonated. These findings are discussed in terms of their mechanistic implications for proton routing through the D-pathway of cytochrome c oxidase.  相似文献   

19.
Although subunit III of cytochrome c oxidase is part of the catalytic core of the enzyme, its function has remained enigmatic. Comparison of the wild-type oxidase and forms lacking subunit III shows that the presence of subunit III maintains rapid proton uptake into the D pathway at the pH of the bacterial cytoplasm or mitochondrial matrix, apparently by contributing to the protein environment of D132, the initial proton acceptor of the D pathway. Subunit III also appears to contribute to the conformation of the normal proton exit pathway, allowing this pathway to take up protons from the outer surface of the oxidase in the presence of DeltaPsi and DeltapH. Subunit III prevents turnover-induced inactivation of the oxidase (suicide inactivation) and the subsequent loss of Cu(B) from the active site. This function of subunit III appears partly related to its ability to maintain rapid proton flow to the active site, thereby shortening the lifetime of reactive O(2) reduction intermediates. Analysis of proton pumping by subunit III-depleted oxidase forms leads to the proposal that the trapping of two protons in the D pathway, one on E286 and one on D132, is required for efficient proton pumping.  相似文献   

20.
Heme-copper oxidases (HCOs) are terminal electron acceptors in aerobic respiration. They catalyze the reduction of molecular oxygen to water with concurrent pumping of protons across the mitochondrial and bacterial membranes. Protons required for oxygen reduction chemistry and pumping are transferred through proton uptake channels. Recently, the crystal structure of the first C-type member of the HCO superfamily was resolved [Buschmann et al. Science 329 (2010) 327–330], but crystallographic water molecules could not be identified. Here we have used molecular dynamics (MD) simulations, continuum electrostatic approaches, and quantum chemical cluster calculations to identify proton transfer pathways in cytochrome cbb3. In MD simulations we observe formation of stable water chains that connect the highly conserved Glu323 residue on the proximal side of heme b3 both with the N- and the P-sides of the membrane. We propose that such pathways could be utilized for redox-coupled proton pumping in the C-type oxidases. Electrostatics and quantum chemical calculations suggest an increased proton affinity of Glu323 upon reduction of high-spin heme b3. Protonation of Glu323 provides a mechanism to tune the redox potential of heme b3 with possible implications for proton pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号