首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Endometrial cancer is a common gynaecological malignant tumour among women across the world. Circular RNAs (circRNAs) are a novel kind of non‐coding RNAs, and they can play a crucial role in multiple cancers. Nevertheless, the mechanisms of circRNAs in regulating gene expression in endometrial cancer are still unclear. Here, our work sought to focus on the role that circ_0067835 exert in progression and development of endometrial cancer cells. We observed circ_0067835 was markedly elevated in endometrial cancer. Then, changes in endometrial cancer cell (RL95‐2 and HEC‐1B) function were determined after circ_0067835 knockdown. Loss‐of‐functional assays revealed that circ_0067835 down‐regulation significantly repressed RL95‐1 and HEC‐1B cell proliferation, migration and invasion. Bioinformatics analysis, luciferase reporter experiment and RNA pull‐down assay were employed to predict and validate circ_0067835 can bind to miR‐324‐5p. Increase in miR‐324‐5p remarkably depressed the proliferation, migration and invasion of endometrial cancer cells via inhibiting high mobility group A1 (HMGA1). HMGA1 is identified as a vital prognostic biomarker in endometrial cancer. Currently, we reported circ_0067835 was positively correlated with HMGA1 in endometrial cancer. We implied that circ_0067835 was capable of sponging miR‐324‐5p and inducing its downstream target HMGA1 in vitro and in vivo. In conclusion, circ_0067835 can compete with miR‐324‐5p, resulting in HMGA1 up‐regulation, and therefore induce the development of endometrial cancer.  相似文献   

3.
MiR‐589‐5p could promote liver cancer, but the specific mechanisms are largely unknown. This study examined the role and mechanisms of miR‐589‐5p in liver cancer. The expressions of miR‐589‐5p, METTL3 and m6A in liver cancers were determined by RT‐qPCR. The relationship between miR‐589‐5p and METTL3‐mediated m6A methylation was examined by m6A RNA immunoprecipitation. After transfection, the viability, migration, invasion and expressions of METTL3 and miR‐589‐5p in liver cancer cells were detected by CCK‐8, wound‐healing, transwell and RT‐qPCR. After the xenograft tumour was established in mice, the tumour volume was determined and the expressions of METTL3, miR‐589‐5p, MMP‐2, TIMP‐2, E‐cadherin, N‐cadherin and Vimentin in tumour tissue were detected by RT‐qPCR and Western blotting. In vitro study showed that miR‐589‐5p and METTL3 were highly expressed in liver cancer. METTL3 was positively correlated with miR‐589‐5p. METTL3 up‐regulated the expression of miR‐589‐5p and promoted the maturation of miR‐589‐5p. Overexpressed miR‐589‐5p and METTL3 promoted the viability, migration and invasion of liver cancer cells, while the effects of silencing miR‐589‐5p and METTL3 on the cells were the opposite. The effects of METTL3 overexpression and silencing were reversed by miR‐589‐5p inhibitor and mimic, respectively. In vivo study showed that METLL3 silencing inhibited the growth of xenograft tumour and the expressions of METTL3, MMP‐2, N‐cadherin and Vimentin, promoted the expressions of TIMP‐2 and E‐cadherin, while miR‐589‐5p mimic caused the opposite results and further reversed the effects of METLL3 silencing. In summary, this study found that METTL3‐mediated maturation of miR‐589‐5p promoted the malignant development of liver cancer.  相似文献   

4.
Circular RNAs (circRNAs) have been demonstrated to play important roles in cancer progress. However, the roles in hepatocellular carcinoma (HCC) are still unclear. Here, we found has_circRNA_001306 (circ_1306) was up‐regulated in HCC tissues and cell lines. Knockdown the expression circ_1306 significantly suppressed HCC cell proliferation and induced the cell apoptosis in vitro and in vivo. Furthermore, we identified circ_1306 could up‐regulate the expression of CDK16 by sponging miR‐584‐5p. The expression of miR‐584‐5p was decreased, and the expression of CDK16 was increased in HCC tissues and cell lines. Meanwhile, either knockdown of miR‐584‐5p or overexpression of CDK16 could suppress the HCC cell proliferation. In vivo, overexpression of miR‐584‐5p or knockdown of circ_1306 could inhibit the expression of CDK16, and suppress tumour growth. Altogether, our findings suggested that circ_1306 could promoter HCC progress by miR‐584‐5p/CDK16 axis, which provided a novel marker for HCC diagnosis and treatment.  相似文献   

5.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

6.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non‐coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up‐regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR‐212‐5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR‐212‐5p was noticeably low in tumour tissues, and FZD5 expression level was down‐regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR‐212‐5p/ FZD5/ Wnt/β‐catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

7.
The breakdown of the blood–brain barrier, which develops early in Alzheimer''s disease (AD), contributes to cognitive impairment. Exercise not only reduces the risk factors for AD but also confers direct protection against cognitive decline. However, the exact molecular mechanisms remain elusive, particularly whether exercise can liberate the function of the blood–brain barrier. Here, we demonstrate that long‐term exercise promotes the clearance of brain amyloid‐β by improving the function of the blood–brain barrier in 5XFAD mice. Significantly, treating primary brain pericytes or endothelial cells with exosomes isolated from the brain of exercised 5XFAD mice improves cell proliferation and upregulates PDGFRβ, ZO‐1, and claudin‐5. Moreover, exosomes isolated from exercised mice exhibit significant changes in miR‐532‐5p. Administration or transfection of miR‐532‐5p to sedentary mice or primary brain pericytes and endothelial cells reproduces the improvement of blood–brain barrier function. Exosomal miR‐532‐5p targets EPHA4, and accordingly, expression of EphA4 is decreased in exercised mice and miR‐532‐5p overexpressed mice. A specific siRNA targeting EPHA4 recapitulates the effects on blood–brain barrier‐associated cells observed in exercised 5XFAD mice. Overall, our findings suggest that exosomes released by the brain contain a specific miRNA that is altered by exercise and has an impact on blood–brain barrier function in AD.  相似文献   

8.
Pancreatic cancer (PC) is a leading cause of cancer‐related mortality globally. Though increasing evidence has demonstrated that circular RNAs (circRNAs) are linked to the development and progression of cancers, the biological functions of circRNAs in PC remain largely unexplored so far. Based on previous studies, Hsc_circ_0075829 (circ_0075829) was screened out and then further identified in PC clinical specimens and cell lines by real‐time PCR. After the stability tests, a series of in vitro and in vivo functional experiments were performed to investigate the role of circ_0075829 in PC development. Furthermore, fluorescent in situ hybridization (FISH), bioinformatics tools, dual‐luciferase assays and rescue experiments were conducted to clarify the regulatory mechanisms of circ_0075829 in SW1990 and BxPC‐3 cells. Compared with paracancerous tissues, the expression of circ_0075829 was increased in PC tissues, which was positively correlated with the clinical features of PC. Knockdown of circ_0075829 significantly suppressed the proliferative, migratory and invasive rates of SW1990 and BxPC‐3 cells both in vitro and in vivo. Bioinformatics analysis and dual‐luciferase reporter gene assay indicated that circ_0075829 could bind to miR‐1287‐5p. Mechanism research and rescue experiments demonstrated that circ_0075829 could regulate the LAMTOR3/p‐ERK signalling pathway via sponging miR‐1287‐5p in PC cell lines. Our data reveal that the circ_0075829 could facilitate the proliferation and metastasis of PC through circ_0075829/miR‐1287‐5p/LAMTOR3 axis.  相似文献   

9.
Atherosclerosis is a complex pathological process involving macrophages, endothelial cells and vascular smooth muscle cells that can lead to ischemic heart disease; however, the mechanisms underlying cell‐to‐cell communication in atherosclerosis are poorly understood. In this study, we focused on the role of exosomal miRNAs in crosstalk between macrophages and endothelial cells and explored the rarely studied molecular mechanisms involved. Our in vitro result showed that macrophage‐derived exosomal miR‐4532 significantly disrupted human umbilical vein endothelial cells (HUVECs) function by targeting SP1 and downstream NF‐κB P65 activation. In turn, increased endothelin‐1 (ET‐1), intercellular cell adhesion molecule‐1 (ICAM‐1) and vascular cell adhesion molecule‐1 (VCAM‐1) and decreased endothelial nitric oxide synthase (eNOS) expression in HUVECs increased attraction of macrophages, exacerbating foam cell formation and transfer of exosomal miR‐4532 to HUVECs. MiR‐4532 overexpression significantly promoted endothelial injury and pretreatment with an inhibitor of miR‐4532 or GW4869 (exosome inhibitor) could reverse this injury. In conclusion, our data reveal that exosomes have a critical role in crosstalk between HUVECs and macrophages. Further, exosomal miR‐4532 transferred from macrophages to HUVECs and targeting specificity protein 1 (SP1) may be a novel therapeutic target in patients with atherosclerosis.  相似文献   

10.
Pyroptosis is associated with various cardiovascular diseases. Increasing evidence suggests that long noncoding RNAs (lncRNAs) have been implicated in gene regulation, but how lncRNAs participate in the regulation of pyroptosis in the heart remains largely unknown. In this study, we aimed to explore the antipyroptotic effects of lncRNA FGF9‐associated factor (FAF) in acute myocardial infarction (AMI). The expression patterns of lncRNA FAF, miR‐185‐5p and P21 activated kinase 2 (PAK2) were detected in hypoxia/ischaemia‐induced cardiomyocytes. Hoechst 33342/PI staining, lactate dehydrogenase (LDH) release assay, immunofluorescence and Western blotting were conducted to assay cell pyroptosis. The interaction between lncRNA FAF, miR‐185‐5p and PAK2 was verified by bioinformatics analysis, small RNA sequencing luciferase reporter assay and qRT‐PCR. The expression of LncRNA FAF was downregulated in hypoxic cardiomyocytes and myocardial tissues. Overexpression of lncRNA FAF could attenuate cardiomyocyte pyroptosis, improve cell viability and reduce infarct size during the procession of AMI. Moreover, lncRNA FAF was confirmed as a sponge of miR‐185‐5p and promoted PAK2 expression in cardiomyocytes. Collectively, our findings reveal a novel lncRNA FAF/miR‐185‐5p/PAK2 axis as a crucial regulator in cardiomyocyte pyroptosis, which might be a potential therapeutic target of AMI.  相似文献   

11.
Radiotherapy is a common method for the treatment of lung adenocarcinoma, but it often fails due to the relative non‐susceptibility of lung adenocarcinoma cells to radiation. We aimed to discuss the related mechanisms by which miR‐126‐5p might mediate radiosensitivity of lung adenocarcinoma cells. The binding affinity between miR‐126‐5p and EZH2 and between KLF2 and BIRC5 was identified using multiple assays. A549 and H1650 cells treated with X‐ray were transfected with miR‐126‐5p mimic/inhibitor, oe‐EZH2, or si‐KLF2 to detect cell biological functions and radiosensitivity. Finally, lung adenocarcinoma nude mouse models were established. miR‐126‐5p and KLF2 were poorly expressed, while EZH2 and BIRC5 were upregulated in lung adenocarcinoma tissues and cells. miR‐126‐5p targeted EZH2 to promote the KLF2 expression so as to inhibit BIRC5 activation. Both in vitro and in vivo experiments verified that elevated miR‐126‐5p inhibited cell migration and promoted apoptosis to enhance the sensitivity of lung adenocarcinoma cells to radiotherapy via the EZH2/KLF2/BIRC5 axis. Collectively, miR‐126‐5p downregulated EZH2 to facilitate the sensitivity of lung adenocarcinoma cells to radiotherapy via KLF2/BIRC5.  相似文献   

12.
Hypoxia/reoxygenation (H/R)‐induced myocardial cell injury is the main cause of acute myocardial infarction (AMI). Many proofs show that circular RNA plays an important role in the development of AMI. The purpose of this study was to investigate the role of circSAMD4A in H/R‐induced myocardial injury. The levels of circular SAMD4A (circSAMD4A) were detected in the heart tissues of AMI mice and H/R‐induced H9C2 cells, and the circSAMD4A was suppressed in AMI mice and H/R‐induced H9C2 cells to investigate its’ function in AMI. The levels of circSAMD4A and miR‐138‐5p were detected by real‐time quantitative PCR, and MTT assay was used to detect cell viability. TUNEL analysis and Annexin V‐FITC were used to determine apoptosis. The expression of Bcl‐2 and Bax proteins was detected by Western blot. IL‐1β, TNF‐α and IL‐6 were detected by ELISA kits. The study found that the levels of circSAMD4A were up‐regulated after H/R induction and inhibition of circSAMD4A expression would reduce the H/R‐induced apoptosis and inflammation. MiR‐138‐5p was down‐regulated in H/R‐induced H9C2 cells. circSAMD4A was a targeted regulator of miR‐138‐5p. CircSAMD4A inhibited the expression of miR‐138‐5p to promote H/R‐induced myocardial cell injury in vitro and vivo. In conclusion, CircSAMD4A can sponge miR‐138‐5p to promote H/R‐induced apoptosis and inflammatory response.  相似文献   

13.
Epilepsy is a chronic brain disease characterized by recurrent seizures. Circular RNA (circRNA) is a novel family of endogenous non‐coding RNAs that have been proposed to regulate gene expression. However, there is a lack of data on the role of circRNA in epilepsy. In this study, the circRNA profiles were evaluated by microarray analysis. In total, 627 circRNAs were up‐regulated, whereas 892 were down‐regulated in the hippocampus in mice with kainic acid (KA)‐induced epileptic seizures compared with control. The expression of circHivep2 was significantly down‐regulated in hippocampus tissues of mice with KA‐induced epileptic seizures and BV‐2 microglia cells upon KA treatment. Bioinformatics analysis predicted that circHivep2 interacts with miR‐181a‐5p to regulate SOCS2 expression, which was validated using a dual‐luciferase reporter assay. Moreover, overexpression of circHivep2 significantly inhibited KA‐induced microglial activation and the expression of inflammatory factors in vitro, which was blocked by miR‐181a‐5p, whereas circHivep2 knockdown further induced microglia cell activation and the release of pro‐inflammatory proteins in BV‐2 microglia cells after KA treatment. The application of circHivep2+ exosomes derived from adipose‐derived stem cells (ADSCs) exerted significant beneficial effects on the behavioural seizure scores of mice with KA‐induced epilepsy compared to control exosomes. The circHivep2+ exosomes also inhibited microglial activation, the expression of inflammatory factors, and the miR‐181a‐5p/SOCS2 axis in vivo. Our results suggest that circHivep2 regulates microglia activation in the progression of epilepsy by interfering with miR‐181a‐5p to promote SOCS2 expression, indicating that circHivep2 may serve as a therapeutic tool to prevent the development of epilepsy.  相似文献   

14.
15.
Renal ischaemia‐reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR‐144‐5p acts as a molecular trigger in various diseases. We presumed that miR‐144‐5p might be involved RI/R injury progression. We found that RI/R injury decreased miR‐144‐5p expression in rat models. MiR‐144‐5p downregulation promoted cell apoptosis rate and activated Wnt/β‐catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull‐down, luciferase reporter experiments, we found that circ‐AKT3 sponged to miR‐144‐5p and decreased its expression in RI/R injury rats. Moreover, we found that circ‐AKT3 promoted cell apoptosis rate and activated Wnt/β‐catenin signal, and miR‐144‐5p mimic reversed the promotive effect of circ‐AKT3 in rat models. We also found that circ‐AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR‐144‐5p/Wnt/β‐catenin pathway and oxidative stress.  相似文献   

16.
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.  相似文献   

17.
At present, growing evidence indicates that long non‐coding RNAs (lncRNAs) participate in the progression of glioma. The function of LOXL1AS1 in vasculogenic mimicry (VM) in glioma remains unclear. First, the expressions of TIAR, the lncRNA LOXL1AS1, miR374b5p and MMP14 were examined by qRT‐PCR and Western blot in both, glioma tissues and glioma cell lines. Proliferation, migration, invasion and tube formation assays were conducted to evaluate the roles of TIAR, LOXL1AS1, miR374b5p and MMP14 in malignant cellular behaviours in glioma cells. A nude mouse xenograft model and dual staining for CD34 and PAS were used to assess whether VM was affected by TIAR, LOXL1AS1 or miR374b5p in vivo. In this study, low levels of TIAR and high levels of LOXL1AS1 were found in glioma cells and tissues. TIAR downregulated the expression of LOXL1AS1 by destabilizing it. LOXL1AS1 acted like a miRNA sponge towards miR374b5p so that downregulation of the former greatly inhibited cell proliferation, migration, invasion and VM. Additionally, miR374b5p overexpression repressed malignant biological behaviours and VM in glioma by modifying MMP14. In summary, we demonstrated that TIAR combined with LOXL1AS1 modulates VM in glioma via the miR374b5p/MMP14 axis, revealing novel targets for glioma therapy.  相似文献   

18.
Accumulating evidence suggests that circular RNAs (circRNAs) play essential roles in regulating cancer progression, but many circRNAs in hepatocellular carcinoma (HCC) remain unknown. Dysregulated circRNAs in HCC were identified through bioinformatics analysis of Gene Expression Omnibus data sets. Quantitative real‐time PCR (qRT‐PCR), Sanger sequencing, RNase R digestion and actinomycin D treatment were conducted to confirm the characterization of circRNAs. CCK‐8, wound‐healing and Transwell assays were performed to assess the functional roles of Hsa_circ_0003945 (Circ_0003945) in HCC cell lines. Subcellular fractionation and fluorescence in situ hybridization (FISH) were performed to locate Circ_0003945 in HCC cells. Dual‐luciferase reporter assay was executed to verify the binding of Circ_0003945 to microRNAs (miRNAs) or the miRNAs to their target genes. In this study, we found that Circ_0003945 was upregulated in HCC tissue, and higher Circ_0003945 expression was positively correlated with tumour size and tumour stage. Furthermore, high plasma levels of circulating Circ_0003945 were confirmed in HCC patients compared with those in non‐HCC groups. The functional experiments revealed that overexpression or knockdown of Circ_0003945 promoted or attenuated tumour growth and migration, respectively. Mechanistically, Circ_0003945 might exert as a miR‐34c‐5p sponge to upregulate the expression of leucine‐rich repeat‐containing G protein‐coupled receptor 4 (LGR4), activating the β‐catenin pathway, and finally facilitating HCC progression. Additionally, a β‐catenin activator could reverse the effect of Circ_0003945 knockdown. In conclusion, Circ_0003945 exerts a tumour‐promoting role in HCC cells by regulating the miR‐34c‐5p/LGR4/β‐catenin axis, which may be a potential target for HCC therapy.  相似文献   

19.
20.
Circular RNAs (circRNAs) are often found in eukaryocyte and have a role in the pathogenesis of a variety of human disorders. Our related research has shown the differential expression of circRNAs in periprosthetic osteolysis (PPOL). However, the involvement of circRNAs in the exact process is yet unknown. CircSLC8A1 expression was evaluated in clinical samples and human bone marrow mesenchymal stem cells (hBMSCs) in this investigation using quantitative real‐time PCR. In vitro and in vivo studies were conducted to explicate its functional role and pathway. We demonstrated CircSLC8A1 is involved in PPOL using gain‐ and loss‐of‐function methods. The association of CircSLC8A1 and miR‐144‐3p, along with miR‐144‐3p and RUNX1, was predicted using bioinformatics. RNA pull‐down and luciferase assays confirmed it. The impact of CircSLC8A1 in the PPOL‐mouse model was also investigated using adeno‐associated virus. CircSLC8A1 was found to be downregulated in PPOL patients'' periprosthetic tissues. Overexpression of CircSLC8A1 promoted osteogenic differentiation (OD) and inhibited apoptosis of hBMSCs in vitro. The osteogenic markers of RUNX1, osteopontin (OPN) and osteocalcin (OCN) were significantly upregulated in hBMSCs after miR‐144‐3p inhibitor was transferred. Mechanistic analysis demonstrated that CircSLC8A1 directly bound to miR‐144‐3p and participated in PPOL through the miR‐144‐3p/RUNX1 pathway in hBMSCs. Micro‐CT and quantitative analysis showed that CircSLC8A1 markedly inhibited PPOL, and osteogenic markers (RUNX1, OPN and OCN) were significantly increased (P<0.05) in the mice model. Our findings prove that CircSLC8A1 exerted a regulatory role in promoting osteogenic differentiation in hBMSCs, and CircSLC8A1/miR‐144‐3p/RUNX1 pathway may provide a potential target for prevention of PPOL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号