首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   

2.
A major bottleneck in the field of biochemistry is our limited understanding of the processes by which a protein folds into its native conformation. Much of the work on this issue has focused on the conserved core of the folded protein. However, one might imagine that a ubiquitous motif for unaided folding or for the recognition of chaperones may involve regions on the surface of the native structure. We explore this possibility by an analysis of the spatial distribution of regions with amphiphilic α-helical potential on the surface of β-sheet proteins. All proteins, Including β-sheet proteins, contain regions with amphiphilic α-helical potential. That is, any α-helix formed by that region would be amphiphilic, having both hydrophobic and hydrophilic surfaces. In the three-dimensional structure of all β-sheet proteins analyzed, we have found a distinct pattern in the spatial distribution of sequences with amphiphilic α-helical potential. The amphiphilic regions occur in ring shaped clusters approximately 20 to 30 Å in diameter on the surface of the protein. In addition, these regions have a strong preference for positively charged amino acids and a lower preference for residues not favorable to α-helix formation. Although the purpose of these amphiphilic regions which are not associated with naturally occurring α-helix is unknown, they may play a critical role in highly conserved processes such as protein folding. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

4.
The study of complementary protein fragments is thought to be generally useful to identify early folding intermediates. A prerequisite for these studies is the reconstitution of the native-like structure by fragment complementation. Structural analysis of the complementation of the domain-sized proteolytic fragments of E. coli thioredoxin, using a combination of H-exchange and 2D NMR experiments as a fingerprint technique, provide evidence for the extensive reconstitution of a native β-sheet, with local conformational adjustments near the cleavage site. Remarkably, the antiparallel β-strand between the fragments shows a native-like protection of the amide protons to solvent exchange. Our results indicate that these fragments can be useful to study the early events in the still little understood formation of β-sheets. © 1995 Wiley-Liss, Inc.  相似文献   

5.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   

6.
We describe an improved algorithm for protein structure prediction, assuming that the location of secondary structural elements is known, with particular focus on prediction for proteins containing β-strands. Hydrogen bonding terms are incorporated into the potential function, supplementing our previously developed residue-residue potential which is based on a combination of database statistics and an excluded volume term. Two small mixed α/β proteins, 1-CTF and BPTI, are studied. In order to obtain native-like structures, it is necessary to allow the β-strands in BPTI to distort substantially from an ideal geometry, and an automated algorithm to carry this out efficiently is presented. Simulated annealing Monte Carlo methods, which contain a genetic algorithm component as well, are used to produce an ensemble of low-energy structures. For both proteins, a cluster of structures with low RMS deviation from the native structure is generated and the energetic ranking of this cluster is in the top 2 or 3 clusters obtained from simulations. These results are encouraging with regard to the possibility of constructing a robust procedure for tertiary folding which is applicable to β-strand containing proteins. Proteins 33:240–252, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The pectate lyases, PelC and PelE, have an unusual folding motif, known as a parallel β-helix, in which the polypeptide chain is coiled into a larger helix composed of three parallel β-sheets connected by loops having variable lengths and conformations. Since the regular secondary structure consists almost entirely of parallel β-sheets these proteins provide a unique opportunity to study the effect of parallel β-helical structure on circular dichroism (CD). We report here the CD spectra of PelC and PelE in the presence and absence of Ca2+, derive the parallel β-helical components of the spectra, and compare these results with previous CD studies of parallel β-sheet structure. The shape and intensity of the parallel β-sheet spectrum is distinctive and may be useful in identifying other proteins that contain the parallel β-helical folding motif. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

9.
10.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
An analysis of the tendency of hydrophobic groups to tight packing on the surface of β-sheets based on well-known parameters of β-sheets and hydrophobic groups was conducted. This analysis shows the existence of very limited numbers and clearly outlined architecture families of regular parts for the majority of β-structure-containing domains. Each family of architecture strongly depends on the number of β-strands in the pure β-domains and on the existence and number of additional α-helixes and on the mutual arrangements β-strands and α-helixes along the chain in mixed α/β-domains. This paper demonstrates that the tendency of hydrophobic groups to the local tight packing on the surface of β-sheets is probably the main reason for the twist of β-sheets. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The design of β‐barrels has always been a formidable challenge for de novo protein design. For instance, a persistent problem is posed by the intrinsic tendency to associate given by free edges. From the opposite standpoint provided by the redesign of natural motifs, we believe that the intestinal fatty acid binding protein (IFABP) framework allows room for intervention, giving rise to abridged forms from which lessons on β‐barrel architecture and stability could be learned. In this context, Δ98Δ (encompassing residues 29–126 of IFABP) emerges as a monomeric variant that folds properly, retaining functional activity, despite lacking extensive stretches involved in the closure of the β‐barrel. Spectroscopic probes (fluorescence and circular dichroism) support the existence of a form preserving the essential determinants of the parent structure, albeit endowed with enhanced flexibility. Chemical and physical perturbants reveal cooperative unfolding transitions, with evidence of significant population of intermediate species in equilibrium, structurally akin to those transiently observed in IFABP. The recognition by the natural ligand oleic acid exerts a mild stabilizing effect, being of a greater magnitude than that found for IFABP. In summary, Δ98Δ adopts a monomeric state with a compact core and a loose periphery, thus pointing to the nonintuitive notion that the integrity of the β‐barrel can indeed be compromised with no consequence on the ability to attain a native‐like and functional fold.  相似文献   

13.
Site-directed mutagenesis has frequently been used to replace proline with other amino acids in order to determine if proline isomerization is responsible for a slow phase during refolding. Replacement of Pro 85 with alanine in cellular retinoic acid binding protein I (CRABP-I) abolished the slowest refolding phase, suggesting that this phase is due to proline isomerization in the unfolded state. To further test this assumption, we mutated Pro 85 to valine, which is the conservative replacement in the two most closely related proteins in the family (cellular retinoic acid binding protein II and cellular retinol binding protein I). The mutant protein was about 1 kcal/mole more stable than wild type. Retinoic acid bound equally well to wild type and P85V-CRABP I, confirming the functional integrity of this mutation. The refolding and unfolding kinetics of the wild-type and mutant proteins were characterized by stopped flow fluorescence and circular dichroism. The mutant P85V protein refolded with three kinetic transitions, the same number as wild-type protein. This result conflicts with the P85A mutant, which lost the slowest refolding rate. The P85V mutation also lacked a kinetic unfolding intermediate found for wild-type protein. These data suggest that proline isomerization may not be responsible for the slowest folding phase of CRABP I. As such, the loss of a slow refolding phase upon mutation of a proline residue may not be diagnostic for proline isomerization effects on protein folding.  相似文献   

14.
B. licheniformis exo‐small β‐lactamase (ESBL) has a complex architecture with twelve α helices and a five‐stranded beta sheet. We replaced, separately or simultaneously, three of the ESBL α helices with prototype amphiphatic helices from a catalog of secondary structure elements. Although the substitutes bear no sequence similarity to the originals and pertain to unrelated protein families, all the engineered ESBL variants were found able to fold in native like structures with in vitro and in vivo enzymic activity. The triple substituted variant resembles a primitive protein, with folding defects such as a strong tendency to oligomerization and very low stability; however it mimics a non homologous recombinant abandoning the family sequence space while preserving fold. The results test protein folding and evolution theories.  相似文献   

15.
The Tyr corner is a conformation in which a tyrosine (residue “Y”) near the beginning or end of an antiparallel β-strand makes an H bond from its side-chain OH group to the backbone NH and/or CO of residue Y – 3, Y – 4, or Y – 5 in the nearby connection. The most common “classic” case is a Δ4 Tyr corner (more than 40 examples listed), in which the H bond is to residue Y – 4 and the Tyr x1 is near ?60°. Y – 2 is almost always a glycine, whose left-handed β or very extended β conformation helps the backbone curve around the Tyr ring. Residue Y – 3 is in polyproline II conformation (often Pro), and residue Y – 5 is usually a hydrophobic (often Leu) that packs next to the Tyr ring. The consensus sequence, then, is LxPGxY, where the first x (the H-bonding position) is hydrophilic. Residues Y and Y – 2 both form narrow pairs of β-sheet H-bonds with the neighboring strand, Δ5 Tyr corners have a 1-residue insertion between the Gly and the Tyr, forming a β-bulge. One protein family has a Δ4 corner formed by a His rather than a Tyr, and several examples use Trp in place of Tyr. For almost all these cases, the protein or domain is a Greek key β-barrel structure, the Tyr corner ends a Greek key connection, and it is well-conserved in related proteins. Most low-twist Greek key β-barrels have 1 Tyr corner. “Reverse” Δ4 Tyr corners (H bonded to Y + 4) and other variants are described, all less common and less conserved. It seems likely that the more classic Tyr corners (Δ4, Δ5, and Δ3 Tyr, Trp, or His) contribute to the stability of a Greek key connection over a hairpin connection, and also that they may aid in the process of folding up Greek key structures.  相似文献   

16.
Available high‐resolution crystal structures for the family of β‐trefoil proteins in the structural databank were queried for buried waters. Such waters were classified as either: (a) unique to a particular domain, family, or superfamily or (b) conserved among all β‐trefoil folds. Three buried waters conserved among all β‐trefoil folds were identified. These waters are related by the threefold rotational pseudosymmetry characteristic of this protein architecture (representing three instances of an identical structural environment within each repeating trefoil‐fold motif). The structural properties of this buried water are remarkable and include: residing in a cavity space no larger than a single water molecule, exhibiting a positional uncertainty (i.e., normalized B‐factor) substantially lower than the average Cα atom, providing essentially ideal H‐bonding geometry with three solvent‐inaccessible main chain groups, simultaneously serving as a bridging H‐bond for three different β‐strands at a point of secondary structure divergence, and orienting conserved hydrophobic side chains to form a nascent core‐packing group. Other published work supports an interpretation that these interactions are key to the formation of an efficient folding nucleus and folded thermostability. The fundamental threefold symmetric structural element of the β‐trefoil fold is therefore, surprisingly, a buried water molecule.  相似文献   

17.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
β-Strands as constituents of β-pleated sheets in protein tertiary structures often display considerable distortion from a purely extended conformation. The dislocation types are often characterized as “bulging,” “twisting,” and “bending.” The former 2 properties have been extensively studied and classified. In this work an investigation of bent β-structures is undertaken. The structural characteristics examined included the bending angles within and out of the principal strand plane, their distribution among various strand types such as parallel and antiparallel, the amino acid preferences at bend sites, and the usage of charged and polar residues for stabilization through interactive anchoring with other atoms of the β-sheet within which the bent strand lies.  相似文献   

19.
The acid-unfolded state of equine β-lactoglobulin was characterized by means of circular dichroism, nuclear magnetic resonance, analytical gel-filtration chromatography, and analytical centrifugation. The acid-unfolded state of equine β-lactoglobulin has a substantial secondary structure as shown by the far-ultraviolet circular dichroism spectrum but lacks persistent tertiary packing of the side chains as indicated by the near-ultraviolet circular dichroism and nuclear magnetic resonance spectra. It is nearly as compact as the native conformation as shown by the gel filtration and sedimentation experiments, and it has the exposed hydrophobic surface as indicated by its tendency to aggregate. All of these characteristics indicate that the acid-unfolded state of equine β-lactoglobulin is a molten globule state. The α helix content in the acid-unfolded state, which has been estimated from the circular dichroism spectrum, is larger than that in the native state, suggesting the presence of nonnative α helices in the molten globule state. This result suggests the generality of the intermediate with nonnative α helices during the folding of proteins having the β-clam fold. © 1997 Wiley-Liss Inc.  相似文献   

20.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号