首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major sources of vitamin A in the human diet are retinyl esters (mainly retinyl palmitate) and provitamin A carotenoids. It has been shown that classical pancreatic lipase (PL) is involved in the luminal hydrolysis of retinyl palmitate (RP), but it is not known whether pancreatic lipase-related proteins 1 (PLRP1) and 2 (PLRP2), two other lipases recovered in the human pancreatic juice, are also involved. The aim of this study was to assess whether RP acts a substrate for these lipase-related proteins. Pure horse PL, horse PLRP2 and dog PLRP1 were incubated with RP solubilized in its physiological vehicles, i.e., triglyceride-rich lipid droplets, mixed micelles and vesicles. High performance liquid chromatography (HPLC) was used to assess RP hydrolysis by the free retinol released in the incubation medium. Incubation of RP-containing emulsions with horse PL and colipase resulted in RP hydrolysis (0.051+/-0.01 micromol/min/mg). This hydrolysis was abolished when colipase was not added to the medium. PLRP2 and PLRP1 were unable to hydrolyze RP solubilized in emulsions, regardless of whether colipase was added to the medium. PL hydrolyzed RP solubilized in mixed micelles as well (0.074+/-0.014 micromol/min/mg). Again, this hydrolysis was abolished in the absence of colipase. PLRP2 hydrolyzed RP solubilized in micelles but less efficiently than PL (0.023+/-0.005 micromol/min/mg). Colipase had no effect on this hydrolysis. PLRP1 was unable to hydrolyze RP solubilized in micelles, regardless of whether colipase was present or absent. Both PL and PLRP2 hydrolyzed RP solubilized in a vesicle rich-solution, and a synergic phenomenon between the two lipases was enlighten. Taken together, these results show that (1) PL hydrolyzes RP whether RP is solubilized in emulsions or in mixed micelles, (2) PLRP2 hydrolyzes RP only when RP is solubilized in mixed micelles, and (3) PLRP1 is unable to hydrolyze RP regardless of whether RP is solubilized in emulsions or in mixed micelles.  相似文献   

2.
Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.  相似文献   

3.
Human pancreatic lipase-related protein 2 (HPLRP2) was identified for the first time in pancreatic juice using specific anti-peptide antibodies and purified to homogeneity. Antibodies were raised in the rabbit using a synthetic peptide from the HPLRP2 protein sequence deduced from cDNA. Western blotting analysis showed that these antibodies did not react with classical human pancreatic lipase (HPL) or human pancreatic lipase-related protein 1 (HPLRP1) but cross-reacted with native rat PLRP2 (RPLRP2), as well as with recombinant rat and guinea-pig PLRP2 (GPLRP2). Immunoaffinity chromatography was performed on immobilized anti-recombinant HPLRP2 polyclonal antibodies to purify native HPLRP2 after conventional chromatographic steps including gel filtration and chromatrography on an anion-exchanger. The substrate specificity of HPLRP2 was investigated using various triglycerides, phospholipids and galactolipids as substrates. The lipase activity on triglycerides was inhibited by bile salts and weakly restored by colipase. The phospholipase activity of HPLRP2 on phospholipid micelles was very low. A significant level of galactolipase activity was measured using monogalactosyldiglyceride monomolecular films. These data suggest that the main physiological function of HPLRP2 is the hydrolysis of galactolipids, which are the main lipids present in vegetable food.  相似文献   

4.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

5.
HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these results indicate that the effect of amino acid replacements at positions 152 and 156 on CTL-defined epitopes depends strongly on the nature of the substitution. Thus, considerable caution must be exercised in evaluating the significance of particular positions on the basis of single mutations. Nonetheless, the more extensive analysis conducted here indicates that there are differences among residues in the class I Ag "binding pocket," with residue 152 playing a relatively more important role in formation of allogeneic CTL-defined epitopes than residue 156.  相似文献   

6.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

7.
We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position.  相似文献   

8.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

9.
Parathymosin has been purified from calf liver and its primary sequence established, except for a segment containing approximately 11 amino acid residues in the central part of the polypeptide chain. Bovine parathymosin contains approximately 101 amino acid residues and shows 90% identity with rat parathymosin, with substitution of Glu for Asp at positions 21, 57, and 58, Asp for Glu at positions 60 and 63, and Ala for Val at position 77. Three non-conservative substitutions were Ala for Thr at position 81, Leu for Arg at position 78, and Val for Lys at position 79. The replacement at the last two positions of a pair of basic by hydrophobic amino acid residues may account for differences in chromatographic behavior observed for the bovine and rat polypeptides. Analysis of the NH2-terminus employed a new deblocking procedure which was also employed to analyze rat parathymosin, requiring correction of the previously published NH2-terminal sequence for that polypeptide.  相似文献   

10.
Although structurally similar to pancreatic lipase (PL), the key enzyme of intestinal fat digestion, pancreatic lipase-related protein type 2 (PLRP2) differs from PL in certain functional properties. Notably, PLRP2 has a broader substrate specificity than PL, and unlike that of PL, its activity is not restored by colipase in the presence of bile salts. In the studies presented here, the activation mechanism of horse PLRP2 was studied through active site-directed inhibition experiments, and the results demonstrate fundamental differences with that of PL. The opening of the horse PLRP2 flap occurs as soon as bile salt monomers are present, is accelerated in the presence of micelles, and does not require the presence of colipase. Moreover, in contrast to PL, horse PLRP2 is able to directly interact with a bile salt micelle to form an active binary complex, without the micelle being presented by colipase, as evidenced by molecular sieving experiments. These findings, together with the sensitivity of the horse PLRP2 flap to partial proteolysis, are indicative of a higher flexibility of the flap of horse PLRP2 relative to PL. From these results, it can be concluded that PLRP2 can adopt an active conformation in the intestine, which could be important for the further understanding of the physiological role of PLRP2. Finally, this work emphasizes the essential role of colipase in lipase catalysis at the lipid-water interface in the presence of bile.  相似文献   

11.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

12.
Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy.  相似文献   

13.
The open lid mediates pancreatic lipase function   总被引:3,自引:0,他引:3  
Pancreatic triglyceride lipase (PTL) and the homologous pancreatic lipase related protein 2 (PLRP2) provide a unique opportunity to understand the molecular mechanism of lipolysis. They differ in substrate specificity, sensitivity to bile salts, and colipase dependence despite their close amino acid and tertiary structure identity. One important structure, present in both lipases, is the lid which occupies different positions in the inactive and active forms of PTL. We investigated the role of the lid in lipase function by site-specific mutagenesis. By exchanging the lids between PTL and PLRP2, we created two chimeric lipases. Additionally, we made multiple substitution mutations in the PTL lid. PLRP2 with the PTL lid had kinetic properties similar to PLRP2. PTL with the PLRP2 lid was greatly impaired and had no activity at micellar bile salt concentrations even in the presence of colipase. Both chimeras showed interfacial activation suggesting that the closed lid position was maintained. A series of substitution mutations were made in positions Arg257 and Asp258. These mutations demonstrated the importance of these two residues to maintaining the normal activity, triglyceride acyl chain specificity, and colipase interaction of PTL. The preserved interfacial activation in the chimeras, the similar crystal structure of the two lids in the closed position, and the importance of Arg257 and Asp258 in mediating the open conformation of the lid argue that the position of the open lid influences the differences in activity against triglycerides, in sensitivity to bile salts, and in colipase dependence between PTL and PLRP2.  相似文献   

14.
Human pancreatic lipase-related protein 2 (HPLRP2) was previously found to be secreted by the exocrine pancreas. HPLRP2 shows a high level of activity on galactolipids, and might be involved in the digestion of these common vegetable lipids. Specific antibodies were raised in rabbits using a synthetic HPLRP2 peptide selected for its weak amino acid homology with the corresponding peptides of classical human pancreatic lipase (HPL) and human pancreatic lipase-related protein 1 (HPLRP1). ELISA and Western blotting data showed that these antibodies did not react with HPL or HPLRP1. Various tissues from the digestive tract were subjected to Western blotting analysis with the specific anti-peptide HPLRP2 antibody and the expression of HPLRP2 was detected in the pancreas and colon. An ELISA was developed for specifically measuring the HPLRP2 levels in pure pancreatic juice. This procedure was performed using the anti-peptide HPLRP2 antibody as the captor antibody and a biotinylated anti-HPLRP2 polyclonal antibody as the detector antibody. The lowest HPLRP2 quantification limit was found to be 50 microg/L and the reference range for the present assay was 50 microg-500 microg/L. HPL and HPLRP2 levels were measured using specific ELISAs in pancreatic juice from patients with and without pancreatic disorders. Patients with chronic calcifying pancreatitis (CCP) had significantly lower levels of both HPL and HPLRP2 than the controls subjects. The mean HPLRP2 to HPL ratio was estimated to be 28.30% (w/w) and 23.96% (w/w) in controls subjects and CCP patients, respectively, and the difference was not significant. The levels of HPL and HPLRP2 are therefore similarly reduced in both healthy patients and CCP patients.  相似文献   

15.
An analysis of the amino acid distributions at 15 positions, viz., N“, N′, Ncap, N1, N2, N3, N4, Mid, C4, C3, C2, C1, Ccap, C′, and C” in 1,131 α-helices reveals that each position has its own unique characteristics. In general, natural helix sequences optimize by identifying the residues to be avoided at a given position and minimizing the occurrence of these avoided residues rather than by maximizing the preferred residues at various positions. Ncap is most selective in its choice of residues, with six amino acids (S, D, T, N, G, and P) being preferred at this position and another 11 (V, I, F, A, K, L, Y, R, E, M, and Q) being strongly avoided. Ser, Asp, and Thr are all more preferred at Ncap position than Asn, whose role at helix N-terminus has been highlighted by earlier analyses. Furthermore, Asn is also found to be almost equally preferred at helix C-terminus and a novel structural motif is identified, involving a hydrogen bond formed by Nδ2 of Asn at Ccap or C1 position, with the backbone carbonyl oxygen four residues inside the helix. His also forms a similar motif at the C-terminus. Pro is the most avoided residue in the main body (N4 to C4 positions) and at C-ter-minus, including Ccap of an α-helix. In 1,131 α-helices, no helix contains Pro at C3 or C2 positions. However, Pro is highly favoured at N1 and C′. The doublet X-Pro, with Pro at C′ position and extended backbone conformation for the X residue at Ccap, appears to be a common structural motif for termination of α-helices, in addition to the Schellman motif. Main body of the helix shows a high preference for aliphatic residues Ala, Leu, Val, and Ile, while these are avoided at helix termini. A propensity scale for amino acids to occur in the middle of helices has been obtained. Comparison of this scale with several previously reported scales shows that this scale correlates best with the experimentally determined values. Proteins 31:460–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Oligomerization of the amyloid β-protein (Aβ) is a seminal event in Alzheimer's disease. Aβ42, which is only two amino acids longer than Aβ40, is particularly pathogenic. Why this is so has not been elucidated fully. We report here results of computational and experimental studies revealing a C-terminal turn at Val36–Gly37 in Aβ42 that is not present in Aβ40. The dihedral angles of residues 36 and 37 in an Ile31–Ala42 peptide were consistent with β-turns, and a β-hairpin-like structure was indeed observed that was stabilized by hydrogen bonds and by hydrophobic interactions between residues 31–35 and residues 38–42. In contrast, Aβ(31–40) mainly existed as a statistical coil. To study the system experimentally, we chemically synthesized Aβ peptides containing amino acid substitutions designed to stabilize or destabilize the hairpin. The triple substitution Gly33Val–Val36Pro–Gly38Val (“VPV”) facilitated Aβ42 hexamer and nonamer formation, while inhibiting formation of classical amyloid-type fibrils. These assemblies were as toxic as were assemblies from wild-type Aβ42. When substituted into Aβ40, the VPV substitution caused the peptide to oligomerize similarly to Aβ42. The modified Aβ40 was significantly more toxic than Aβ40. The double substitution d-Pro36–l-Pro37 abolished hexamer and dodecamer formation by Aβ42 and produced an oligomer size distribution similar to that of Aβ40. Our data suggest that the Val36–Gly37 turn could be the sine qua non of Aβ42. If true, this structure would be an exceptionally important therapeutic target.  相似文献   

17.
The three-dimensional structure of the mitochondrial cytochrome bc1 complex suggests that movement of the extramembrane domain (head) of the Rieske iron-sulfur protein (ISP) may play an important role in electron transfer. Such movement requires flexibility in the neck region of ISP, since the head and transmembrane domains of the protein are rather rigid. To test this hypothesis, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with cysteine substitution at various positions in the ISP neck (residues 39-48) were generated and characterized. The mutants with a single cysteine substitution at Ala42 or Val44 and a double cysteine substitution at Val44 and Ala46 (VQA-CQC) or at Ala42 and Ala46 (ADVQA-CDVQC) have photosynthetic growth rates comparable with that of complement cells. Chromatophore membrane and intracytoplasmic membrane (ICM) prepared from these mutants have cytochrome bc1 complex activity similar to that in the complement membranes, indicating that flexibility of the neck region of ISP was not affected by these cysteine substitutions. Mutants with a double cysteine substitution at Ala42 and Val44 (ADV-CDC) or at Pro40 and Ala42 (PSA-CSC) have a retarded (50%) or no photosynthetic growth rate, respectively. The ADV-CDC or PSA-CSC mutant ICM contains 20 or 0% of the cytochrome bc1 complex activity found in the complement ICM. However, activity can be restored by the treatment with beta-mercaptoethanol (beta-ME). The restored activity is diminished upon removal of beta-ME but is retained if the beta-ME-treated membrane is treated with the sulfhydryl reagent N-ethylmaleimide or p-chloromercuribenzoic acid. These results indicate that the loss of bc1 complex activity in the ADV-CDC or PSA-CSC mutant membranes is due to disulfide bond formation, which increases the rigidity of ISP neck and, in turn, decreases the mobility of the head domain. Using the conditions developed for the isolation of His-tagged complement cytochrome bc1 complex, a two-subunit complex (cytochromes b and c1) is obtained from all of the double cysteine-substituted mutants. This suggests that introduction of two cysteines in the neck region of ISP weakens the interactions between cytochromes b, ISP, and subunit IV.  相似文献   

18.
Although structurally similar, classic pancreatic lipase (PL) and pancreatic lipase-related protein (PLRP)2, expressed in the pancreas of several species, differ in substrate specificity, sensitivity to bile salts and colipase dependence. In order to investigate the role of the two domains of PLRP2 in the function of the protein, two chimeric proteins were designed by swapping the N and C structural domains between the horse PL (Nc and Cc domains) and the horse PLRP2 (N2 and C2 domains). NcC2 and N2Cc proteins were expressed in insect cells, purified by one-step chromatography, and characterized. NcC2 displays the same specific activity as PL, whereas N2Cc has the same as that PLRP2. In contrast to N2Cc, NcC2 is highly sensitive to interfacial denaturation. The lipolytic activity of both chimeric proteins is inhibited by bile salts and is not restored by colipase. Only N2Cc is found to be a strong inhibitor of PL activity, due to competition for colipase binding. Active site-directed inhibition experiments demonstrate that activation of N2Cc occurs in the presence of bile salt and does not require colipase, as does PLRP2. The inability of PLRP2 to form a high-affinity complex with colipase is only due to the C-terminal domain. Indeed, the N-terminal domain can interact with the colipase. PLRP2 properties such as substrate selectivity, specific activity, bile salt-dependent activation and interfacial stability depend on the nature of the N-terminal domain.  相似文献   

19.
In a previous study, we prepared a monoclonal antibody (MoAb) to coagulation factor IX (FIX), designated 65-10, which interfered with the activation of FIX by the activated factor XI/Ca(2+) and neutralized the prolonged ox brain prothrombin time of hemophilia B(M) [11,12]. The location of the epitope on the FIX for 65-10 MoAb is (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) [21]. In this paper, we studied in more detail an epitope on FIX using the systematic substitution of different amino acids at each residue of the epitope peptides and the influence of the epitope peptide on the prolonged ox brain prothrombin time of the hemophilia B(M) plasma of 65-10 MoAb. In the replacement set of amino acids, peptides showing low or no reactivity to 65-10 were (175)Phe --> Asp, Glu, Gly, Lys, Arg, Thr, Val, (176)Asn --> Asp, Glu, Phe, Ile, Lys, Leu, Pro, Val, Tyr, (177)Asp --> Cys, Glu, Phe, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr, and (178) Phe --> Pro. These results imply that a hydrophobic molecule of (175) Phe, a hydrophilic molecule of (176)Asn, and a negative charge molecule of (177)Asp were important to the epitope. The 65-10 MoAb antibody neutralized the prolonged ox brain prothrombin time of hemophilia B(M) Nagoya 2 ((180)Arg -->Trp) and Kashihara ((181)Val --> Phe) as well as B(M) Kiryu ((313)Val --> Asp) and Niigata ((390)Ala --> Val). This reaction was inhibited by preincubation with a (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) peptide conjugated with bovine serum albumin (BSA). 65-10 MoAb that has been useful in detailing epitopes will be useful for qualitative analysis of hemophilia B(M).  相似文献   

20.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号