首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The H2A/H2B heterodimer is a component of the nucleosome core particle, the fundamental repeating unit of chromatin in all eukaryotic cells. The kinetic folding mechanism for the H2A/H2B dimer has been determined from unfolding and refolding kinetics as a function of urea using stopped-flow, circular dichroism and fluorescence methods. The kinetic data are consistent with a three-state mechanism: two unfolded monomers associate to form a dimeric intermediate in the dead-time of the SF instrument (approximately 5 ms); this intermediate is then converted to the native dimer by a slower, first-order reaction. Analysis of the burst-phase amplitudes as a function of denaturant indicates that the dimeric kinetic intermediate possesses approximately 50% of the secondary structure and approximately 60% of the surface area burial of the native dimer. The stability of the dimeric intermediate is approximately 30% of that of the native dimer at the monomer concentrations employed in the SF experiments. Folding-to-unfolding double-jump experiments were performed to monitor the formation of the native dimer as a function of folding delay times. The double-jump data demonstrate that the dimeric intermediate is on-pathway and obligatory. Formation of a transient dimeric burst-phase intermediate has been observed in the kinetic mechanism of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers, such as the H3-H4 histone dimer, Escherichia coli factor for inversion stimulation and E.coli Trp repressor. The common feature of a dimeric intermediate in these folding mechanisms suggests that this intermediate may accelerate protein folding, when compared to the folding of archael histones, which do not populate a transient dimeric species and fold more slowly.  相似文献   

2.
The kinetic intermediate of RNase H is structured in a core region of the protein. To probe the role of this intermediate in the folding of RNase H, the folding kinetics of mutant proteins with altered native state stabilities were investigated. Mutations within the folding core destabilize the kinetic intermediate and slow refolding in a manner consistent with an obligatory intermediate model. Mutations outside of the folding core, however, do not affect the stability of the kinetic intermediate but do perturb the native state and transition state. These results indicate that interactions formed in the intermediate persist in the transition and native states and that RNase H folds through a hierarchical mechanism.  相似文献   

3.
The small (87-residue) α-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an α-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and ?-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III.  相似文献   

4.
The four-helical protein Im7 folds via a rapidly formed on-pathway intermediate (k(UI)=3000 s(-1) at pH 7.0, 10 degrees C) that contains three (helices I, II and IV) of the four native alpha-helices. The relatively slow (k(IN)=300 s(-1)) conversion of this intermediate into the native structure is driven by the folding and docking of the six residue helix III onto the developing hydrophobic core. Here, we describe the structural properties of four Im7* variants designed to trap the protein in the intermediate state by disrupting the stabilising interactions formed between helix III and the rest of the protein structure. In two of these variants (I54A and L53AI54A), hydrophobic residues within helix III have been mutated to alanine, whilst in the other two mutants the sequence encompassing the native helix III was replaced by a glycine linker, three (H3G3) or six (H3G6) residues in length. All four variants were shown to be monomeric, as judged by analytical ultracentrifugation, and highly helical as measured by far-UV CD. In addition, all the variants denature co-operatively and have a stability (DeltaG(UF)) and buried hydrophobic surface area (M(UF)) similar to those of the on-pathway kinetic intermediate. Structural characterisation of these variants using 1-anilino-8-napthalene sulphonic acid (ANS) binding, near-UV CD and 1D (1)H NMR demonstrate further that the trapped intermediate ensemble is highly structured with little exposed hydrophobic surface area. Interestingly, however, the structural properties of the variants I54A and L53AI54A differ in detail from those of H3G3 and H3G6. In particular, the single tryptophan residue, located near the end of helix IV, and distant from helix III, is in a distinct environment in the two sets of mutants as judged by fluorescence, near-UV CD and the sensitivity of tryptophan fluorescence to iodide quenching. Overall, the results confirm previous kinetic analysis that demonstrated the hierarchical folding of Im7 via an on-pathway intermediate, and show that this species is a highly helical ensemble with a well-formed hydrophobic core. By contrast with the native state, however, the intermediate ensemble is flexible enough to change in response to mutation, its structural properties being tailored by residues in the sequence encompassing the native helix III.  相似文献   

5.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

6.
Development of a tightly packed hydrophobic core drives the folding of water-soluble globular proteins and is a key determinant of protein stability. Despite this, there remains much to be learnt about how and when the hydrophobic core becomes desolvated and tightly packed during protein folding. We have used the bacterial immunity protein Im7 to examine the specificity of hydrophobic core packing during folding. This small, four-helix protein has previously been shown to fold via a compact three-helical intermediate state. Here, overpacking substitutions, in which residue side-chain size is increased, were used to examine the specificity and malleability of core packing in the folding intermediate and rate-limiting transition state. In parallel, polar groups were introduced into the Im7 hydrophobic core via Val→Thr or Phe→Tyr substitutions and used to determine the solvation status of core residues at different stages of folding. Over 30 Im7 variants were created allowing both series of substitutions to cover all regions of the protein structure. Φ-value analysis demonstrated that the major changes in Im7 core solvation occur prior to the population of the folding intermediate, with key regions involved in docking of the short helix III remaining solvent-exposed until after the rate-limiting transition state has been traversed. In contrast, overpacking core residues revealed that some regions of the native Im7 core are remarkably malleable to increases in side-chain volume. Overpacking residues in other regions of the Im7 core result in substantial (> 2.5 kJ mol− 1) destabilisation of the native structure or even prevents efficient folding to the native state. This study provides new insights into Im7 folding; demonstrating that whilst desolvation occurs early during folding, adoption of a specifically packed core is achieved only at the very last step in the folding mechanism.  相似文献   

7.
Elucidation of the high-resolution structures of folding intermediates is a necessary but difficult step toward the ultimate understanding of the mechanism of protein folding. Here, using hydrogen-exchange-directed protein engineering, we populated the folding intermediate of the Thermus thermophilus ribonuclease H, which forms before the rate-limiting transition state, by removing the unfolded regions of the intermediate, including an α-helix and two β-strands (51 folded residues). Using multidimensional NMR, we solved the structure of this intermediate mimic to an atomic resolution (backbone rmsd, 0.51 Å). It has a native-like backbone topology and shows some local deviations from the native structure, revealing that the structure of the folded region of an early folding intermediate can be as well defined as the native structure. The topological parameters calculated from the structures of the intermediate mimic and the native state predict that the intermediate should fold on a millisecond time scale or less and form much faster than the native state. Other factors that may lead to the slow folding of the native state and the accumulation of the intermediate before the rate-limiting transition state are also discussed.  相似文献   

8.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

9.
Garcia LG  Araújo AF 《Proteins》2006,62(1):46-63
Monte Carlo simulations of a hydrophobic protein model of 40 monomers in the cubic lattice are used to explore the effect of energetic frustration and interaction heterogeneity on its folding pathway. The folding pathway is described by the dependence of relevant conformational averages on an appropriate reaction coordinate, pfold, defined as the probability for a given conformation to reach the native structure before unfolding. We compare the energetically frustrated and heterogeneous hydrophobic potential, according to which individual monomers have a higher or lower tendency to form contacts unspecifically depending on their hydrophobicities, to an unfrustrated homogeneous Go-type potential with uniformly attractive native interactions and neutral non-native interactions (called Go1 in this study), and to an unfrustrated heterogeneous potential with neutral non-native interactions and native interactions having the same energy as the hydrophobic potential (called Go2 in this study). Folding kinetics are slowed down dramatically when energetic frustration increases, as expected and previously observed in a two-dimensional model. Contrary to our previous results in two dimensions, however, it appears that the folding pathway and transition state ensemble can be significantly dependent on the energy function used to stabilize the native structure. The sequence of events along the reaction coordinate, or the order along this coordinate in which different regions of the native conformation become structured, turns out to be similar for the hydrophobic and Go2 potentials, but with analogous events tending to occur at lower pfold values in the first case. In particular, the transition state obtained from the ensemble around pfold = 0.5 is more structured for the hydrophobic potential. For Go1, not only the transition state ensemble but the order of events itself is modified, suggesting that interaction heterogeneity, in addition to energetic frustration, can have significant effects on the folding mechanism, most likely by modifying the probability of different contacts in the unfolded state, the starting point for the folding reaction. Although based on a simple model, these results provide interesting insight into how sequence-dependent switching between folding pathways might occur in real proteins.  相似文献   

10.
The folding mechanisms of proteins with multi‐state transitions, the role of the intermediate states, and the precise mechanism how each transition occurs are significant on‐going research issues. In this study, we investigate ferredoxin‐like fold proteins which have a simple topology and multi‐state transitions. We analyze the folding processes by means of a coarse‐grained Gō model. We are able to reproduce the differences in the folding mechanisms between U1A, which has a high‐free‐energy intermediate state, and ADA2h and S6, which fold into the native structure through two‐state transitions. The folding pathways of U1A, ADA2h, S6, and the S6 circular permutant, S6_p54‐55, are reproduced and compared with experimental observations. We show that the ferredoxin‐like fold contains two common regions consisting folding cores as predicted in other studies and that U1A produces an intermediate state due to the distinct cooperative folding of each core. However, because one of the cores of S6 loses its cooperativity and the two cores of ADA2h are tightly coupled, these proteins fold into the native structure through a two‐state mechanism. Proteins 2014; 82:954–965. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Kim DH  Jang DS  Nam GH  Choi KY 《Biochemistry》2001,40(16):5011-5017
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.  相似文献   

12.
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly‐Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process.  相似文献   

13.
We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G, which are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted beta-1 and beta-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding, and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third beta-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally, the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first-order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.  相似文献   

14.
The addition of trifluoroethanol or hexafluoroisopropanol converts the apparent two-state folding of acylphosphatase, a small alpha/beta protein, into a multistate mechanism where secondary structure accumulates significantly in the denatured state before folding to the native state. This results in a marked acceleration of folding as revealed by following the intrinsic fluorescence and circular dichroism changes upon folding. The folding rate is at a maximum when the secondary-structure content of the denatured state corresponds to that of the native state, while further stabilization of secondary structure decreases the folding rate. These findings indicate that stabilization of intermediate structure can either enhance or retard folding depending on its nature and content of native-like interactions.  相似文献   

15.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

16.
We have analysed the transition state of folding of the four-helix FF domain from HYPA/FBP11 by high-resolution experiment and simulation as part of a continuing effort to understand the principles of folding and the refinement of predictive methods. The major transition state for folding was subjected to a Phi-value analysis utilising 50 mutants. The transition state contained a nucleus for folding centred around the end of helix 1 (H1) and the beginning of helix 2 (H2). Secondary structure in this region was fully formed (PhiF=0.9-1) and tertiary interactions were well developed. Interactions in the distal part of the native structure were weak (PhiF=0-0.2). The hydrophobic core and other parts of the protein displayed intermediate Phi-values, suggesting that interactions coalesce as the end of H1 and beginning of H2 are in the process of being formed. The distribution of Phi-values resembled that of barnase, which folds via an intermediate, rather than that of CI2 which folds by a concerted nucleation-condensation mechanism. The overall picture of the transition state structure identified in molecular dynamics simulations is in qualitative agreement, with the turn connecting H1 and H2 being formed, a loosened core, and H4 partially unfolded and detached from the core. There are some differences in the details and interpretation of specific Phi-values.  相似文献   

17.
The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts.  相似文献   

18.
We have analyzed the folding pathway of the tetramerization domain of the tumor suppressor protein p53. Structures of transition states were determined from phi-values for 25 mutations, including leucine to norvaline, and the analysis encompassed nearly every residue in the domain. Denatured monomers fold and dimerize, through a transition state with little native structure, to form a transient, highly structured dimeric intermediate. The intermediate dimerizes, through a native-like transition state with the primary dimers fully folded but with interdimer interactions only partially formed, to form the native tetramer as a 'dimer of dimers'.  相似文献   

19.
Although numerous studies have been directed at understanding early folding events through the characterization of folding intermediates, there are few reports on the very late folding events, i.e. on the events taking place on the native side of the folding barrier and on alternative conformations of the folded state. To shed further light on these issues, we have characterized by protein engineering the structure of an expanded but native-like intermediate that accumulates transiently in the unfolding reaction of the small protein S6 in the presence of SDS. The results show that the SDS micelles attack the native protein in the dead-time of the denaturation experiment, causing an expansion of the hydrophobic core prior to the major unfolding transition. We distinguish two forms of the unfolding intermediate that are correlated with the micellar structure. With spherical micelles, the expansion is seen mainly as a weakening of the interactions which anchor the two alpha-helices to the core of the S6 structure. With cylindrical micelles, prevalent at higher SDS concentrations, the expansion is more global and produces a species which closely resembles the transition-state structure for unfolding in GdmCl. Despite the highly weakened core, the micelle-associated intermediate displays cooperative unfolding, indicating a significant structural plasticity of the species on the native side of the folding barrier in the presence of SDS.  相似文献   

20.
Lee MR  Duan Y  Kollman PA 《Proteins》2000,39(4):309-316
We investigated the stability of three different ensembles of the 36-mer villin headpiece subdomain, the native, a compact folding intermediate, and the random coil. Structures were taken from a 1-micros molecular dynamics folding simulation and a 100-ns control simulation on the native structure. Our approach for each conformation is to first determine the solute internal energy from the molecular mechanics potential and then to add the change resulting from solvation (DeltaG(solv)). Explicit water was used to run the simulation, and a continuum model was used to estimate DeltaG(solv) with the finite difference Poisson-Boltzmann model accounting for the polarization part and a linearly surface area-dependent term for the non-polar part. We leave out the solute vibrational entropy from these values but demonstrate that there is no statistical difference among the native, folding intermediate, and random coil ensembles. We find the native ensemble to be approximately 26 kcal/mol more stable than the folding intermediate and approximately 39 kcal/mol more stable than the random coil ensemble. With an experimental estimate for the free energy of denaturation equal to 3 kcal/mol, we approximate the non-native degeneracy to lie between 10(16) and 10.(25) We also present a possible scheme for the mechanism of folding, first-order exponential decay of a putative transition state, with an estimate for the t(1/2) of folding of approximately 1 micros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号