首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike technical grade yeast RNA, which was confirmed to contain several per cent of 2′–5′ phosphodiester linkages, RNA prepared from different kinds of commercial yeast in a cold room consisted exclusively of 3′–5′ phosphodiester linkages. Heat treatment of the 3′–5′ linked RNA solution resulted in partial isomerization of the internucleotide linkage of the polynucleotide chain (C3′-C5′->C2′-C5′). The isomerization of RNA occurred in the presence of water, at high temperature, and under acidic conditions. Treatment of dry RNA at 100°C for 2hr did not result in any detectable isomerization. The isomerization was actually observed in yeast RNA when yeast cells suspended in sodium chloride solution were heated. It is concluded therefore that 2′-5′ phosphodiester linkages found in technical grade RNA had been formed neither at a step of precipitating RNA with acid nor at a step of drying RNA, but had been formed at a step of heat extraction of RNA from yeast. When 0.1 % poly (A) solution, pH 4.8, was heated for 20 hr in a boiling water bath, the isomerization proceeded during the first 6hr, and finally reached about 37%, irrespective of chain length.  相似文献   

2.
The virtual bond scheme set forth in preceding papers for treating the average properties of polyriboadenylic acid (poly rA) is here applied to the calculation of the unperturbed mean-square end-to-end distance of polydeoxyriboadenylic acid (poly dA). The modifications in structure and in charge distribution resulting from the replacement of the hydroxyl group at C2′ in the ribose residue by hydrogen in deoxyribose produce only minor modifications in the conformational energies associated with the poly dA chain as compared to those found for poly rA. The main difference is manifested in the energy associated with rotations about the C3′–O3′ bond of the deoxyribose residue in the C2′-endo conformation; accessible rotations are confined to the range between 0° and 30° relative to the trans conformation, whereas in the ribose unit the accessible regions comprise two ranges centered at approximately 35° and 85°. The characteristic ratio 〈r2〉0/nl2 calculated on the basis of the conformational energy estimates is ≈9 for the poly dA chain with all deoxyribose residues in the C3′-endo conformation and ≈21 with all residues in the C2′-endo form. Satisfactory agreement is achieved between the theoretical values and experimental results on apurinic acid by treating the poly dA chain as a random copolymer of C3′-endo and C2′-endo conformational isomers present in a ratio of ~1 to 9.  相似文献   

3.
W Saenger  D Suck  M Knappenberg  J Dirkx 《Biopolymers》1979,18(8):2015-2036
The cytostatic drug 6-azauridine is converted in vivo to 6-azauridine-5′-phosphate (z6Urd-5′-P), which blocks the enzyme orotidine-5′-phosphate decarboxylase (Ord-5′-Pdecase) and therefore inhibits the de novo production of uridine-5′-phosphate (Urd-5′-P). In order to relate the structure and function of z6Urd-5′-P, it was crystallized as trihydrate, space group P212121 with a = 20.615 Å, b = 6.265 Å, c = 11.881 Å, and the structure established by Patterson methods. Atomic parameters were refined by full-matrix least-squares methods to R = 0.066 using 1638 counter measured x-ray data. The ribose of z6Urd-5′-P is in a twisted C(2′)-exo, C(3′)endo conformation, the heterocycle is in extreme anti position with angle N(6)-N(1)-C(1′)-O(4′) at 86.3°, and the orientation about the C(4′)-C(5′) bond is gauche, trans in contrast to gauche, gauche found for all the other 5′-ribonucleotides. Conformational energy calculations show that z6Urd-5′-P may adopt an extreme anti conformation not allowed to Urd-5′-P, and they also predict the same unusual trans, gauche conformation about the C(4′)-C(5′) bond in orotidine-5′-phosphate (Ord-5′-P) and in z6Urd-5′-P, which renders the distances O(2)…O(5′) in z6Urd-5′-P and O(7)…O(5′) in Ord-5′-P comparable. On this basis the function of z6Urd-5′-P as an Ord-5′-Pdecase inhibitor can be explained as being due to its structural similarity with the substrate Ord-5′-P and further clarifies the inhibitory action of 5′-nucleotides bearing the heterocycles oxipurinol, xanthine, or allopurinol [J. A. Fyfe, R. L. Miller, and T. A. Krenitsky, J. Biol. Chem. 248 , 3801 (1973)]. With this in mind, new inhibitors for Ord-5′-Pdecase may be designed.  相似文献   

4.
《Inorganica chimica acta》1986,119(2):177-186
Synthetic routes are described for the new halo- methyl complexes of the type [η-C5Me5M(CO)3- CH2X]. The complexes where M = Mo, X = Cl or OMe and M = W, X = Cl, I, OMe have been fully characterized. Reaction of [η-C5Me5Mo(CO)3CH2Cl] with PPh3 in methanol under reflux or acetonitrile at room temperature gives [η-C5Me5Mo(CO)2(PPh3)- Cl], whereas reaction of [η-C5Me5W(CO)3CH2I] with PPh3 under similar conditions gives the cationic phosphorus ylide complex [η-C5Me5W(CO)3CH2- PPh3]I. The structure of this ylide complex has been determined by X-ray crystallography. The complex crystallizes with half a molecule of CH2Cl2 in the monoclinic space group P21/n with a = 16.616- (8), b = 11.738(6), c = 18.126(9) Å, β = 101.74(2)° and Z = 4. The structure was solved and refined to R = 0.076. It confirms the formulation of the compound and the presence of the ylide ligand, WCylide 2.34(2) Å, PCylide 1.82(2) Å and the WCylideP angle of 119(1)°.  相似文献   

5.
This study sought to understand the origin and fate of one of the bitumen mounds found on the bottom of Lake Baikal. These mounds are located at a depth of 900 m beneath oil spots detected on the surface of Lake Baikal (53° 18′24, 108° 23′20). The two mounds were sampled with a manipulator from a “MIR” deep-water manned submersible. Mature mound No. 8 was subjected to chemical and microbiological studies. Mound No. 3 was subjected only to chemical studies; we failed to perform microbiological analyses of this mound for logistic reasons. Oil spots collected from the water surface, samples of mound No. 3 and No. 8, were subjected to GC/MS analysis. The water contained aliphatic hydrocarbons with chains between C8 and C23, with the most abundant chain length being C18. Mound No. 3 with the most abundant chain length being C18 actively released oil droplets into the water. It contained 770 mg/g of C13-C32 n-alkanes, with a maximum at C23 (160 mg/g). Mound No. 8 was inactive and contained 148 mg/g of aliphatic C22-C34 n-alkanes, with a maximum at C25. Mound No. 8 also consisted of 3% inorganic matter, 48% unresolved complex mixture (UCM) and less than 1% other compounds (polyaromatic hydrocarbons, isoprenoids, carotenoids, and hopanes). The core of this sample used as inoculate, yielded Rhodococci when cultivated on oil as the only source of carbon. Cultivation of the sample on agar-containing Raymond inorganic medium with crude West Siberian oil as the only source of carbon revealed colonies of these bacteria, which all appeared identical. PCR was performed with DNA isolated from 5 colonies, using primers for 16S rRNA genes. Comparison of the sequences of the 5 PCR products over a length of 714 bp revealed that they were almost identical. Phylogenetic analysis of these homologous sequences showed that they were similar to the corresponding sequences of the genus Rhodococcus. Substrate demands, the morphology of the colonies, and SEM and TEM data confirmed that the isolates obtained could indeed be Rhodococci. All of the isolates could grow in bulk cultures with inorganic medium supplemented with crude oil. Moreover, all of the isolates degraded aliphatic hydrocarbons with lengths between C11 and C29. C23-C29 hydrocarbons were degraded completely. The isolates could grow at 4–37°C. The most unexpected finding was that of the many microorganisms capable of consuming oil, only Rhodococci exhibited this ability in the inactive bitumen mound. The possible mechanisms of how crude oil is transformed into bitumen mounds and mature bitumen are discussed.  相似文献   

6.
We have measured the 31P n.m.r. spectra of NADP+ and NADPH in their binary complexes with Escherichia coli dihydrofolate reductase and in ternary complexes with the enzyme and folate or methotrexate. The 31P chemical shift of the 2′ phosphate group is the same in all complexes; its value indicates that it is binding in the dianionic state and its pH independence suggests that it is interacting strongly with cationic residue(s) on the enzyme. Similar behaviour has been noted previously for the complexes with the Lactobacillus casei enzyme although the 31P shift is somewhat different in this complex, possibly due to an interaction between the 2′ phosphate group and His 64 which is not conserved in the E. coli enzyme. For the coenzyme complexes with both enzymes 31POC21H2′ spin-spin interactions were detected (7.5–7.8 Hz) on the 2′ phosphate resonances, indicating a POC2H2′ dihedral angle of 30 or 330 : this is in good agreement with the value of 330° measured in crystallographic studies1 (Matthews et al., 1978) on the L. casei enzyme. NADPH-MTX complex. The pyrophosphate resonances are shifted to different extents in the various complexes and there is evidence that there is more OPO bond angle distortion in the E. coli enzyme complexes than in those with the L. casei enzyme. The effects of 31POC51H5′ spin coupling were detected on one pyrophosphate resonance and indicate that the POC5H5′ torsion angle has changed by at least ~30° on binding to the E. coli enzyme: this is considerably less than the distortion (~50°) observed previously in the L. casei enzyme complex.  相似文献   

7.
Abstract

The mode of base-base stacking, the handedness and the sugar(dGpA)phosphate backbone conformation of deoxyguanosyl 3′-5′ deoxyadenosine and its diastereomeric ethyl phosphotriester analogs were studied by 1H NMR, UV and CD spectroscopy. The results indicate the three dimers are left-handed, while the sugar phosphate backbone is comprised predominantly of C2′-endo, gg (C4′-C5′) and g′g′ (C5′-O) conformers. The two bases are extensively stacked and interact about 90° along the dyad axes. The extent of base overlap in dGpA is slightly greater than in either ethyl phosphotriester analog. The absolute configurations of the two ethyl phosphotriester diastereoisomers of dGpA can be assigned by one-dimensional and two-dimensional 1H NMR nuclear Overhauser enhancement experiments.  相似文献   

8.
《Inorganica chimica acta》2006,359(9):2812-2818
Alkynylgold(I) complexes incorporating a chiral binaphthyl group have been prepared. Bis(alkyne) reagents [rac-1,1′-C20H12-2,2′-(OCH2CCH)2] (1) and [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCH)2] (2), react with [AuCl(SMe2)] and base to give insoluble oligomeric alkynylgold(I) complexes [rac-1,1′-C20H12-2,2′-(OCH2CCAu)2]n (3) and [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCAu)2]n (4), which react with phosphine or diphosphine ligands to give soluble complexes [rac-1,1′-C20H12-2,2′-(OCH2CCAuPR3)2] (5), R = Ph or Cy, [rac-1,1′-C20H12-2,2′-(OCH2CCAu)2(Ph2P(CH2)nPPh2)] (6), or [rac-1,1′-C20H12-2,2′-(OC(O)CH2CCAu)2(Ph2P(CH2)nPPh2)] (7), with n = 3–5. Several of the complexes 6 and 7 are shown to exist as mixtures of isomeric forms in solution.  相似文献   

9.
10.
《Inorganica chimica acta》1988,145(2):191-194
Monthioformate and dithioformate complexes of [HRu(η5-C5H5)(EPh3)(E′Ph3)] (E, E′  P, As, Sb) have been synthesized as a result of the insertion reactions of [HRu(η5-C5H5)(EPh3)(E′Ph3)] with carbonyl sulfide and carbon disulfide. The complexes were characterized by microanalytical, infra red, 1H NMR, 13C NMR spectral data, molecular weight determination along with other studies.  相似文献   

11.
Klaus Haas 《Phytochemistry》1982,21(3):657-659
The mosses Andreaea rupestris, Pogonatum aloides and P. urnigerum contain surface waxes in amounts of 0.05–0.12% dry wt. The waxes consisted of esters (C38-C54), primary alcohols (C20-C32), free fatty acids (C16-C30), and alkanes (C21-C31). Additionally, aldehydes (C22-C30) were major constituents in the wax of P. urnigerum. The classes and their chain length distributions in the surface waxes of these mosses are comparable to those of epicuticular waxes of higher plants.  相似文献   

12.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency.  相似文献   

13.
Phosphoenolpyruvate carboxylase (PEPC) was purified from leaves of four species of Alternanthera differing in their photosynthetic carbon metabolism: Alternanthera sessilis (C3), A. pungens (C4), A. ficoides and A. tenella (C3-C4 intermediates or C3-C4). The activity and properties of PEPC were examined at limiting (0.05 mM) or saturating (10 mM) bicarbonate concentrations. The Vmax as well as Km values (for Mg2+ or PEP) of PEPC from A. ficoides and A. tenella (C3-C4 intermediates) were in between those of C3 (A. sessilis) and C4 species (A. pungens). Similarly, the sensitivity of PEPC to malate (an inhibitor) or G-6-P (an activator) of A. ficoides and A. tenella (C3-C4) was also of intermediate status between those of C3 and C4 species of A. sessilis and A. pungens, respectively. In all the four species, the maximal activity (Vmax), affinity for PEP (Km), and the sensitivity to malate (KI) or G-6-P (KA) of PEPC were higher at 10 mM bicarbonate than at 0.05 mM bicarbonate. Again, the sensitivity to bicarbonate of PEPC from C3-C4 intermediates was in between those of C3- and C4-species. Thus the characteristics of PEPC of C3-C4 intermediate species of Alternanthera are intermediate between C3- and C4-type, in both their kinetic and regulatory properties. Bicarbonate could be an important modulator of PEPC, particularly in C4 plants. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Three new pigments, named versicolorins A, Band C, as metabolites from the mycelium of Aspergillus versicolor have been isolated. Versicolorin A, C18H10O7, is fine orange yellow needles, m.p. 289°C (decomp.), [α]D-354°. It is an anthraquinoid pigment having three hydroxyl groups and a vinyl ether system contained in a five-membered ring. Versicolorin A trimethyl ether was hydrogenated to a dihydro-derivative, and by oxidation gave 3,5-dimethoxyphthalic acid and a hydroxy acid which may be 1,6,8-trirnethoxy-3-hydroxy anthraquinone-2-carboxylic acid. These chemical behavior and NMR data show that versicolorin A probably has the structure of (I). Versicolorin B, C18H12O7, is fine orange yellow needles, m.p., 298°C (decomp.), [α]D-223° Its trimethyl ether is identical with that of dihydroversicolorin A. Therefore, the structure (II) could be assigned to versicolorin B. Versicolorin C, C18H12O7, is orange red needles, m.p.>310°C, [α]D O° Comparison of optical properties, IR and NMR spectra of versicolorin B and its methyl ether with those of versicolorin C and its methyl ether indicates that versicolorin C is very probably a racemate of versicolorin B.  相似文献   

15.
The crystal structure of (Z)-acetyl-α,β-dehydrophenylalanine methylamide (monoclinic Cc, a = 10.241(1), b = 15.252(1), c = 8.643(1) Å, β = 120.98(1)°, Z = 4) has been solved by x-ray diffraction to an R-factor = 0.148, and compared to that of the homologous L -phenylalanine dervative. Molecules are intermolecularly hydrogen-bonded to four neighboring molecules in a three-dimensional network with alternating layers of interacting amide bonds and orthogonally arranged phenyl rings. The existence of the Cα = Cβ double bond results in a phenyl orientation that is forbidden for phenylananine (χ1 = ?7,8°), and in shorter Cα ? Cβ and Cβ ? Cγ distances. The geometrical paramenters of the peptide backbone are not drastically modified by α,β-unsaturation. However, the N-Cα-C′ angle is increased by nearly 5°, and the dimensions, and therefore probably the electronic conjugation, of the N-terminal amide group to be affected by the occurrence of the vicinal Cα = Cβ double bond.  相似文献   

16.
A procedure is described, based on a spline-function representation of ab initio peptide conformational geometry maps, that allows one to predict backbone bond distances and angles of proteins as functions of the peptide ?(N-Cα)/Ψ(Cα-C′) torsions with an accuracy comparable to that of high-resolution protein crystallography. For example, for the more than 40 residues of crambin, the rms deviation between predicted and crystallographic values of N-Cα-C′ is 1.9° for the 1.5 Å resolution structure and 1.9° for the 0.83 Å resolution structure, compared with angle variations of < 10°. Accurate information on protein backbone geometries is important for establishing dictionaries of flexible geometry functions for use in empirical peptide and protein modeling. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Lithioamidines {R′N(Li)C(R)NR′, I; R = CH3, R′ = C6H5, p-CH3,C6H4} react with iron(III) chloride
in monoglyme to produce navy-blue, high spin Fe{R′NC(R)NR′}3 complexes which are extremely air and moisture sensitive. The corresponding reaction when R = R′ = C6H5 produces a soluble red complex and an air-stable green complex, whereas when R = H, R′ = C6H5 and R = R′ = C6H5 and the reaction is started at ca. ?20°, red and green complexes respectively are formed. Though all the complexes are formulated Fe{R′NC(R)NR′}3, their properties reflect association through bridging amidino-groups. Iron(II) chloride reacts with I(R = CH3, R′ = p-CH3C6H4) to form two complexes, one crimson and soluble in organic solvents, and one brown and insoluble, which are fomulated [Fe{R′NC(R)NR′}2]n. The iron(III) complexes failed to react with, or were decomposed by, a variety of reducing, electrophilic and nucleophilic reagents, though blue Fe{p-CH3C6H4NC(CH3)N-p-CH3C6H4}3 reacts readily with nitric oxide to form a purple addition complex from which the N-nitroso-compound p-CH3C6H4NC(CH3)N(NO)-p-CH3C6H4 was obtained in high yield. Treatment of the corresponding brown iron(II) complex with nitric oxide gave no reaction.  相似文献   

18.
Protein kinase CK2, formerly known as casein kinase II, is a ubiquitous protein serine/threonine kinase. The enzyme exists in tetrameric complexes composed of two catalytic (CK2α and/or CK2α′) subunits and two subunits (CK2β) that appear to have a role in modulating the activity of the catalytic subunits. With the exception of their unrelated carboxy-terminal domains, the two isozymic forms of mammalian CK2 display extensive sequence identity. Furthermore, CK2α and CK2α′ exhibit remarkable conservation between species, suggesting that they may have unique functions. In the present study, the cDNAs encoding CK2α and CK2α′ were modified by addition of the hemagglutinin tag of the influenza virus at the amino terminus of the respective proteins. The epitope-tagged proteins were transfected into Cos-7 cells and the localization of the expressed proteins determined by indirect immunofluorescence using monoclonal antibodies specific for the epitope tag. The use of transfection favors the formation of homotetrameric complexes (i.e., α2β2, α′2β2) instead of heterotetrameric complexes (i.e., αα′β2) that are present in many cells. Epitope-tagged CK2α and CK2α′ displayed kinase activity and the ability to form complexes with CK2β. The results of these studies also indicate definitively that CK2α and CK2α′ are both localized predominantly within the nucleus. Mutation of conserved lysine residues within the ATP binding domains of CK2α and CK2α′ resulted in loss of kinase activity. However, examination of these mutants indicates that kinase activity is not essential for formation of complexes between subunits of CK2 and is not required for nuclear localization of CK2. J. Cell. Biochem. 64: 525–537. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The mechanism of C-C and ether bond cleavages of Cα-or Cβ-deuterated β-O-4 and β-l lignin substructure models and the vicinal diol compounds catalyzed by the enzyme system from Phanerochaete chrysosporium culture was investigated. The enzymatic oxidation of β-O-4 lignin model compounds in the presence of H2O2 and O2 yielded C6-Cα-derived benzaldehyde, and Cβ-Cγ-derived product together with the arylglycerol product. Likewise, the β-l models and the diol compounds also underwent the C-C bond cleavage, yielding C6-Cβ-derived benzaldehyde and the arylglycol product. The results demonstrated that the d-labels at Cα and Cβ of the substrates were retained in the products after the Cα-Cβ and ether bond cleavages.  相似文献   

20.
Abstract

Bowman-Birk inhibitors (BBIs) are a well-studied family of canonical inhibitor proteins of serine proteinases. In nature, the active region of BBIs possesses a highly conserved Thr at the P2 position. The importance of this residue has been reemphasized by synthetic BBI reactive site loop proteinomimetics. In particular, this residue was exclusively identified for active chymotrypsin inhibitors selected from a BBI template-assisted combinatorial peptide library. A further kinetic analysis of 26 P2 variant peptides revealed that Thr provides both optimal binding affinity and optimal resistance against enzymatic turnover by chymotrypsin.

Herein, we report the H-NMR spectroscopic study of a 5-membered sub-set of these reactive site loop peptides representing a stepwise elimination of the Thr side-chain functionalities and inversion of its side-chain chirality. The P2 Thr variant adopts a three-dimensional structure that closely mimics the one of the corresponding region of the complete protein. This validates the use of this template for the investigation of structure-function relationships. While the overall backbone geometry is similar in all studied variants, conformational changes induced by the modification of the P2 side chain have now been identified and provide a rational explanation of the kinetically observed functional differences. Eliminating the γ-methyl group has little structural effect, whereas the elimination of the γ-oxygen atom or the inversion of the side-chain chirality results in characteristic changes to the intramolecular hydrogen bond network. We conclude that the transannular hydrogen bond between the P2 Thr side-chain hydroxyl and the P5′ backbone amide is an important conformational constraint and directs the hydrophobic contact of the P2 Thr side chain with the enzyme surface in a functionally optimal geometry, both in the proteinomimetic and the native protein.

In at least four canonical inhibitor protein families similar structural arrangements for a conserved P2 Thr have been observed, which suggests an analogous functional role. Substitutions at P2 of the proteinomimetic also affect the conformational balance between cis and trans isomers at a distant Pro-Pro motif (P3′-P4′). Presented with a mixture of cis/trans isomers chymotrypsin appears to interact preferably with the conformer that retains the cis-P3′ Pro-trans-P4′ Pro geometry found in the parent BBI protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号