首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capping box, a recurrent hydrogen bonded motif at the N-termini of alpha-helices, caps 2 of the initial 4 backbone amide hydrogen donors of the helix (Harper ET, Rose GD, 1993, Biochemistry 32:7605-7609). In detail, the side chain of the first helical residue forms a hydrogen bond with the backbone of the fourth helical residue and, reciprocally, the side chain of the fourth residue forms a hydrogen bond with the backbone of the first residue. We now enlarge the earlier definition of this motif to include an accompanying hydrophobic interaction between residues that bracket the capping box sequence on either side. The expanded box motif--in which 2 hydrogen bonds and a hydrophobic interaction are localized within 6 consecutive residues--resembles a glycine-based capping motif found at helix C-termini (Aurora R, Srinivasan R, Rose GD, 1994, Science 264:1126-1130).  相似文献   

2.
A mutant of papain, where an inter-domain hydrogen bond between the side chain hydroxyl group of a serine residue at position 176 and the side chain carbonyl oxygen of a glutamine residue at position 19 has been removed by site-directed mutagenesis, has been produced and characterized kinetically. The mutation of Ser176 to an alanine has only a small effect on the kinetic parameters, the kcat/Km for hydrolysis of CBZ-Phe-Arg-MCA by the Ser176Ala enzyme being of 8.1 x 10(4) /M/s compared with 1.2 x 10(5) /M/s for papain. Serine 176 is therefore not essential for the catalytic functioning of papain, even though this residue is conserved in all cysteine proteases sequenced. The pH-activity profiles were shown to be narrower in the mutant enzyme by up to 1 pH unit at high ionic strength. This result is interpreted to indicate that replacing Ser176 by an alanine destabilizes the thiolate-imidazolium form of the catalytic site Cys25-His159 residues of papain. Possible explanations for that effect are given and the role of a serine residue at position 176 in papain is discussed.  相似文献   

3.
Herein, we demonstrate the control of protein heteroconjugation via a tyrosyl coupling reaction by using electrostatic interaction. Aspartic acid and arginine were introduced to a tyrosine containing peptide tag (Y-tag) to provide electrostatic charge. Designed negatively or positively charged Y-tags were tethered to the C-terminus of Escherichia coli alkaline phosphatase (BAP) and streptavidin (SA), and these model proteins were subjected to horseradish peroxidase (HRP) treatment. The negatively charged Y-tags showed low reactivity due to repulsive interactions between the Y-tags with the negatively charged BAP and SA. In contrast, the positively charged Y-tags showed high reactivity, indicating that the electrostatic interaction between Y-tags and proteins significantly affects the tyrosyl radical mediated protein cross-linking. From the heteroconjugation reaction of BAP and SA, the SA with the positively charged Y-tags exhibited favorable cross-linking toward negatively charged BAP, and the BAP-SA conjugates prepared from BAP with GY-tag (GGGGY) and SA with RYR-tag (RRYRR) had the best performance on a biotin-coated microplate. Encompassing the reactive tyrosine residue with arginine residues reduced the reactivity against HRP, enabling the modulation of cross-linking reaction rates with BAP-GY. Thus, by introducing a proper electrostatic interaction to Y-tags, it is possible to kinetically control the heteroconjugation behavior of proteins, thereby maximizing the functions of protein heteroconjugates.  相似文献   

4.
Positions of metal-binding residues with respect to helical terminii in protein structures have been analyzed in order to determine if the location of these ligands is influenced by the helix dipole. Most ligands do not show any preference for the amino- or carboxy-terminus of a helix. For steric reasons, peptide ligands can be located only at the C-terminus. The availability of a second ligand residue closely placed along the sequence may be of more importance, rather than the electrostatic interaction involving helix dipole, in cases where ligands are found near the C-terminus. The location of heme-binding histidine residues at the C-terminus may be due to the steric requirements of the heme group and also the intrahelical hydrogen bond that the residues can form at this position. Considerations based on such geometrical features and not just the helix dipole may help us to understand the observed distribution of charged residues along alpha-helices and the favorable role these amino acids have on folding of isolated helices.  相似文献   

5.
L Polgár 《Biochemistry》1992,31(33):7729-7735
Prolyl oligopeptidase belongs to a new family of serine proteases which contains both exo- and endopeptidases, and this suggests that the enzyme binds its substrate in a special manner. Its secondary specificity, i.e., its interaction with the other residues linked to the proline that accounts for the primary specificity, has been investigated by using peptide substrates of various length and charge. Elongation of the classic dipeptide substrate Z-Gly-Pro-2-naphthylamide with 1-3 residues (Gln, Ala-Gln, Ala-Ala-Gln, and Ala-Lys-Gln) resulted in decreased specificity rate constants. This indicated a limited binding site for prolyl oligopeptidase, a major difference from the finding with other serine endopeptidases. Insertion of charged residues into the substrates, such as lysine or aspartic acid, considerably affected the rates and the pH-rate profiles. The rate constants were higher with the positively charged peptides and lower with the substrates bearing a negative charge. These electrostatic effects were reduced at high ionic strength. The results can be interpreted in terms of a negatively charged active site, which exists at high pH and exerts electrostatic attraction or repulsion toward charged substrates. The pH dependencies of the rate constants with neutral substrates exhibited roughly bell-shaped curves, whereas with charged substrates the existence of two active enzyme forms was clearly demonstrated. The physiologically competent high pH form preferred positively charged substrates (Z-Lys-Pro-2-(4-methoxy)naphthylamide, Z-Ala-Lys-Gln-Gly-Pro-2-naphthylamide), whereas the low pH form reacted faster with the negatively charged substrate (Z-Asp-Gly-Pro-2-naphthylamide).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A series of synthetic peptides have been studied as models for non-specific protein-DNA interactions. In an alpha-helical conformation, the charged amino acid residues of the N-terminal 24 residues of RecA protein are asymmetrically distributed; at neutral pH there is a +4 charge on one face of the helix and a -3 charge on the other face. Modeling suggests that the positive face of the helix can bind five DNA phosphate groups by electrostatic interactions. Circular dichroism (c.d.) spectra indicate that the analogous peptide, Rec24 (AIDENKQKALAAALGQIEKQFGKG-amide), is largely unstructured in water but becomes highly helical in the presence of DNA. Peptide titrations of fluorescent etheno-DNA confirm that the changes in the c.d. spectrum of the peptide are associated with binding, although a dependence of the c.d. signal on the degree of DNA saturation is observed, indicating that peptide can be bound in more than one conformation. At saturation the peptide binds to 5.0(+/- 0.5) DNA phosphate groups as predicted and the electrostatic nature of the binding is confirmed by a strong dependence on salt concentration. A "mutant" peptide where an acidic glutamate residue replaces an alanine on the basic face of the Rec24 helix exhibits weaker binding to single-stranded DNA, also consistent with the electrostatic nature of the proposed peptide-DNA interaction. Extending Rec24 by ten amino acid residues, where the additional residues do not participate in the helical motif, does not noticeably affect binding. Thus, we show experimentally that an asymmetric charge distribution on an alpha-helix can represent an important element for binding nucleic acids.  相似文献   

7.
Anionic phosphatidic acid (PA) has been shown to stabilize and bind stronger than phosphatidylglycerol via electrostatic and hydrogen bond interaction with the positively charged residues of potassium channel KcsA. However, the effects of these lipids on KcsA folding or secondary structure are not clear. In this study, the secondary structure analyses of KcsA potassium channel was carried out using circular dichroism spectroscopy. It was found that PA interaction leads to increases in α-helical and β-sheet content of KcsA protein. In PA, KcsA α-helical structure was further stabilized by classical membrane-active cosolvent trifluoroethanol followed by reduction in the β-sheet content indicating cooperative transformation from the β-sheet to an α-helical structure. The data further uncover the role of anionic PA in KcsA folding and provide mechanism by which strong hydrogen bonds/electrostatic interaction among PA headgroup and basic residues on lipid binding domains may induce high helical structure thereby altering the protein folding and increasing the stability of tetrameric assembly.  相似文献   

8.
To construct an artificial photosynthetic system, multi-Zn(II)-mesoporphyrins in peptide dendrimers were equipped as a photosensitizer of photoinduced hydrogen evolution in a four-component system (electron donor, photosensitizer, electron carrier, and catalyst), so that hydrogen was evolved effectively by the dendrimer architecture, for the first time. The hydrogen evolution activity was correlated to the photoreduction ability of viologen by the Zn-porphyrin-peptide dendrimers. Additionally, using positively charged methyl-viologen as an electron carrier, the photoinduced hydrogen evolution function with the positively charged peptide dendrimer was superior to that with the negatively charged peptide dendrimer, despite that the positive dendrimer did not strongly bind the positively charged methyl-viologen with the electrostatic interaction. By contrast, when zwitterionic propylviologen sulfonate was used, photoreduction and hydrogen evolution properties were identical between the positively and the negatively charged dendrimers. These results demonstrated that the dynamic interaction between the positive dendrimer and methyl-viologen was preferable for the photoreduction and hydrogen evolution, and that the three-dimensional assembly of Zn(II)-mesoporphyrins using the peptide dendrimers was effective as a photosensitizer in the artificial photosynthesis.  相似文献   

9.
The RNA-binding N-terminal arm of the coat protein of cowpea chlorotic mottle virus has been studied with five molecular dynamics simulations of 2.0 ns each. This 25-residue peptide (pep25) is highly charged: it contains six Arg and three Lys residues. An alpha-helical fraction of the sequence is stabilized in vitro by salts. The interaction of monophosphate (Pi) ions with pep25 was studied, and it was found that only two Pi ions are bound to pep25 on average, but water-mediated interactions between pep25 and Pi, which provide electrostatic screening for intrapeptide interactions, are abundant. Shielding by the Pi ions of repulsive electrostatic interactions between Arg sidechains increases the alpha-helicity of pep25. A hydrogen bond at the N-terminal end of the alpha-helix renders extension of the alpha-helix in the N-terminal direction impossible, in agreement with evidence from nuclear magnetic resonance experiments.  相似文献   

10.
A molecular dynamics simulation has been carried out for water molecules with a rigid segment of antifreeze protein type I. The segment consists of nine alanine residues, two threonine residues and one asparagine residue. Mutant segments, in which the threonine residues are replaced with valine residues, or serine residues, are also used. It is predicted that the hydrogen site of asparagine residue, and that of threonine residue, play an important role in the hydrogen bond of water molecules in these sites. This hydrogen bond is not noticeable between water molecules and the valine residue, or serine residue. The existence of four hydrophilic sites enhances the mobility of water molecules close to the serine residue of the mutant segment. The difference in the zenith-angle fluctuations of the original segment and the valine-mutant segment is less noticeable in the case of 230 K. This is because the gathering of water molecules due to the hydrophobic hydration is predominant near the alanine residues of the segments at this temperature.  相似文献   

11.
Although the peptide C(alpha)H group has historically not been thought to form hydrogen bonds within proteins, ab initio quantum calculations show it to be a potent proton donor. Its binding energy to a water molecule lies in the range between 1.9 and 2.5 kcal/mol for nonpolar and polar amino acids; the hydrogen bond (H-bond) involving the charged lysine residue is even stronger than a conventional OH..O interaction. The preferred H-bond lengths are quite uniform, about 3.32 A. Formation of each interaction results in a downfield shift of the bridging hydrogen's chemical shift and a blue shift in the C(alpha)H stretching frequency, potential diagnostics of the presence of such an H-bond within a protein.  相似文献   

12.
BACE (β-site amyloid precursor protein cleaving enzyme, β-secretase) is a type-I membrane protein which functions as an aspartic protease in the production of β-amyloid peptide, a causative agent of Alzheimer's disease. Its cytoplasmic tail has a characteristic acidic-cluster dileucine motif recognized by the VHS domain of adaptor proteins, GGAs (Golgi-localizing, γ-adaptin ear homology domain, ARF-interacting). Here we show that BACE is colocalized with GGAs in the trans -Golgi network and peripheral structures, and phosphorylation of a serine residue in the cytoplasmic tail enhances interaction with the VHS domain of GGA1 by about threefold. The X-ray crystal structure of the complex between the GGA1-VHS domain and the BACE C-terminal peptide illustrates a similar recognition mechanism as mannose 6-phosphate receptors except that a glutamine residue closes in to fill the gap created by the shorter BACE peptide. The serine and lysine of the BACE peptide point their side chains towards the solvent. However, phosphorylation of the serine affects the lysine side chain and the peptide backbone, resulting in one additional hydrogen bond and a stronger electrostatic interaction with the VHS domain, hence the reversible increase in affinity.  相似文献   

13.
Hyperphosphorylated forms of tau protein are the main component of paired helical filaments (PHFs) of neurofibrillary tangles in the brain of Alzheimer's disease patients. To understand the effect of phosphorylation on the fibrillation of tau, we utilized tau-derived phosphorylated peptides. The V(306)QIVYK(311) sequence (PHF6) in the microtubule-binding domain is known to play a key role in the fibrillation of tau, and the short peptide corresponding to the PHF6 sequence forms amyloid-type fibrils similar to those generated by full-length tau. We focused on the amino acid residue located at the N-terminus of the PHF6 sequence, serine or lysine in the native isoform of tau, and synthesized the PHF6 derivative peptides with serine or lysine at the N-terminus of PHF6. Peptides phosphorylated at serine and/or tyrosine were synthesized to mimic the possible phosphorylation at these positions. The critical concentrations of the fibrillation of peptides were determined to quantitatively assess fibril stability. The peptide with the net charge of near zero tended to form stable fibrils. Interestingly, the peptide phosphorylated at the N-terminal serine residue exhibited remarkably low fibrillation propensity as compared to the peptide possessing the same net charge. Transmission electron microscopy measurements of the fibrils visualized the paired helical or straight fibers and segregated masses of the fibers or heterogeneous rodlike fibers depending on the phosphorylation status. Further analyses of the fibrils by the X-ray fiber diffraction method and Fourier transform infrared spectroscopic measurements indicated that all the peptides shared a common cross-β structure. In addition, the phosphoserine-containing peptides showed the characteristics of β-sandwiches that could interact with both faces of the β-sheet. On the basis of these observations, possible protofilament models with four β-sheets were constructed to consider the positional effects of the serine and/or tyrosine phosphorylations. The electrostatic intersheet interaction between phosphate groups and the amino group of lysine enhanced the lateral association between β-sheets to compensate for the excess charge. In addition to the previously postulated net charge of the peptide, the position of the charged residue plays a critical role in the amyloid fibrillation of tau.  相似文献   

14.
A model peptide with enhanced helicity   总被引:4,自引:0,他引:4  
The sequence of a model monomeric peptide, acetylA(EAAAK)3Aamide was altered to expedite measurement of peptide concentration and to enhance its fractional helical content. Replacement of the N-terminal alanine residue with a tryptophan residue provides a convenient chromophore for measurement of peptide concentration without diminishing the helical content. Replacement of the three lysine residues with arginine residues enhances the helical content without loss of their electrostatic contributions. Increasing the number of EAAAR sequence units in the peptide acetylW(EAAAR)nAamide from three to five indicates that the spectral features anticipated for a completely helical peptide are closely approached.  相似文献   

15.
Exendin-4 is a natural, 39-residue peptide first isolated from the salivary secretions of a Gila Monster (Heloderma suspectum) that has some pharmacological properties similar to glucagon-like-peptide-1 (GLP-1). This paper reports differences in the structural preferences of these two peptides. For GLP-1 in aqueous buffer (pH 3.5 or 5.9), the concentration dependence of circular dichroism spectra suggests that substantial helicity results only as a consequence of helix bundle formation. In contrast, exendin-4 is significantly helical in aqueous buffer even at the lowest concentration examined (2.3 microM). The pH dependence of the helical signal for exendin-4 indicates that helicity is enhanced by a more favorable sequence alignment of oppositely charged sidechains. Both peptides become more helical upon addition of either lipid micelles or fluoroalcohols. The stabilities of the helices were assessed from the thermal gradient of ellipticity (partial differential theta(221)/partial differential T values); on this basis, the exendin helix does not melt appreciably until temperatures significantly above ambient. The extent of helix formation for exendin-4 in aqueous buffer (and the thermal stability of the resulting helix) suggests the presence of a stable helix-capping interaction which was localized to the C-terminal segment by NMR studies of NH exchange protection. Solvent effects on the thermal stability of the helix indicate that the C-terminal capping interaction is hydrophobic in nature. The absence of this C-capping interaction and the presence of a flexible, helix-destabilizing glycine at residue 16 in GLP-1 are the likely causes of the greater fragility of the monomeric helical state of GLP-1. The intramolecular hydrophobic clustering in exendin-4 also appears to decrease the extent of helical aggregate formation.  相似文献   

16.
The cytoplasmic tail of the amyloid precursor protein (APPc) interacts with several cellular factors implicated in intracellular signaling or proteolytic production of amyloid beta peptide found in senile plaques of Alzheimer's disease patients. APPc contains two threonine residues (654 and 668 relative to APP695, or 6 and 20 relative to APPc) and a serine residue (655 or 7, respectively) that are known to be phosphorylated in vivo and may play regulatory roles in these events. We show by solution NMR spectroscopy of a 49 residue cytoplasmic tail peptide (APP-C) that in all three cases, phosphorylation induces changes in backbone dihedral angles that can be attributed to formation of local hydrogen bonds between the phosphate group and nearby amide protons. Phosphorylation of S7 also induces chemical shift changes in the hydrophobic cluster (residues I8-V13), indicating additional medium-range effects. The most pronounced changes occur upon phosphorylation of T20, a neuron-specific phosphorylation site, where the N-terminal helix capping box previously characterized for this region is altered. Characterization of torsion angles and transient hydrogen bonds indicates that prolyl isomerization of the pThr-Pro peptide bond results from both destabilization of the N-terminal helix capping box and stabilization of the cis isomer by transient hydrogen bonds. The significant population of the cis isomer (9 %) present after phosphorylation of T20 suggests a potential role of selective recognition of cis versus trans isomers in response to phosphorylation of APP. Together, these structural changes indicate that phosphorylation may act as a conformational switch in the cytoplasmic tail of APP to alter specificity and affinity of binding to cytosolic partners, particularly in response to the abnormal phosphorylation events associated with Alzheimer's disease.  相似文献   

17.
The rate of association of equine liver alcohol dehydrogenase and its coenzymes exhibits a large pH dependence with slower rates at basic pH and an observed kinetic pKa value of approximately 9-9.5. This pH dependence has been explained by invoking local active site electrostatic effects which result in repulsion of the negatively charged coenzyme and the ionized hydroxyl anion form of the zinc-bound water molecule. We have examined a simpler hypothesis, namely, that the pH dependence results from the electrostatic interaction of the coenzyme and the enzyme which changes from an attractive interaction of the negatively charged coenzyme and the positively charged enzyme to a repulsive interaction between the two negatively charged species at the isoelectric point for the enzyme (pH 8.7). We have tested this proposal by examining the ionic strength dependence of the association rate constant at various pH values. These data have been interpreted by using the Wherland-Gray equation, which we have shown can be applied to the kinetics of enzyme-coenzyme association. Our results indicate that the shielding of the buffer electrolyte changes from a negative to a positive value as the charge on the protein changes at the isoelectric point. This result is exactly that which is predicted for electrostatic effects that depend on the charge of the protein molecule and is not consistent with predictions based upon the local active site effects. At low ionic strength values of 10 mM or less, approximately 75% of the observed pH dependence results from the enzyme electrostatic effects; the remaining pH dependence may result from active site effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In atomic force microscopy, the tip experiences electrostatic, van der Waals, and hydration forces when imaging in electrolyte solution above a charged surface. To study the electrostatic interaction force vs distance, curves were recorded at different salt concentrations and pH values. This was done with tips bearing surface charges of different sign and magnitude (silicon nitride, Al2O3, glass, and diamond) on negatively charged surfaces (mica and glass). In addition to the van der Waals attraction, neutral and negatively charged tips experienced a repulsive force. This repulsive force depended on the salt concentration. It decayed exponentially with distance having a decay length similar to the Debye length. Typical forces were about 0.1 nN strong. With positively charged tips, purely attractive forces were observed. Comparing these results with calculations showed the electrostatic origin of this force.

In the presence of high concentrations (> 3 M) of divalent cations, where the electrostatic force can be completely ignored, another repulsive force was observed with silicon nitride tips on mica. This force decayed roughly exponentially with a decay length of 3 nm and was ~0.07-nN strong. This repulsion is attributed to the hydration force.

  相似文献   

19.
4(R)-Hydroxyproline in the Yaa position of the -Gly-Xaa-Yaa-repeated sequence of collagen plays a crucial role in the stability of the triple helix. Since the peptide (4(R)-Hyp-Pro-Gly)10 does not form a triple helix, it was generally believed that polypeptides with a -Gly-4(R)-Hyp-Yaa-repeated sequence do not form a triple helix. Recently, we found that acetyl-(Gly-4(R)-Hyp-Thr)10-NH2 forms a triple helix in aqueous solutions. To further study the role of 4(R)-hydroxyproline in the Xaa position, we made a series of acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptides where Yaa was alanine, serine, valine, and allo-threonine. We previously hypothesized that the hydroxyl group of threonine might form a hydrogen bond to the hydroxyl group of 4(R)hydroxyproline. In water, only the threonine- and the valine-containing peptides were triple helical. The remaining peptides did not form a triple helix in water. In 1,2- and in 1,3-propanediol at 4 degrees C, all the soluble peptides were triple helical. From the transition temperature of the triple helices, it was found that among the examined residues, threonine was the most stable residue in the acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptide. The transition temperatures of the valine- and allo-threonine-containing peptides were 10 degrees lower than those of the threonine peptide. Surprisingly, the serine-containing peptide was the least stable. These results indicate that the stability of these peptides depends on the presence of a methyl group as well as the hydroxyl group and that the stereo configuration of the two groups is essential for the stability. In the threonine peptide, we hypothesize that the methyl group shields the interchain hydrogen bond between the glycine and the Xaa residue from water and that the hydroxyl groups of threonine and 4(R)hydroxyproline can form direct or water-mediated hydrogen bonds.  相似文献   

20.
Composition variation of a complex peptide mixture under enzymatic transformation can be tracked by mass spectrometry (MS). In this report, papain-catalyzed esterification of fibroin peptides was investigated at the individual peptide level using liquid chromatography-mass spectrometry with selected ion monitoring. Optimal conditions for maximizing ester formation were obtained using a water-to-pentanol ratio of 1:9 at pH 2.8 and 40°C; however, the optimum conditions varied for individual peptides. The optimum pH levels were 2.5 and 2.8 for the tetrapeptides with a tyrosine or a valine residue and those with alanine or serine residues, respectively. The optimum pH shifted to 3.4 for dipeptide esters with a tyrosine residue. Tetrapeptides had a relatively higher rate of esterification above 50°C. Alhough, the profiles of peptides and their esters in the esterification reaction were significantly affected by the reaction conditions, alanyl-glycine ester represented the largest fraction in the mixture under most reaction conditions. As demonstrated here, MS analysis of peptide mixtures can be used to elucidate specific reaction conditions for the enrichment of particular peptide products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号