共查询到20条相似文献,搜索用时 0 毫秒
1.
Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community’s abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines. 相似文献
2.
Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management
下载免费PDF全文

Christopher M. Ference Alberto M. Gochez Franklin Behlau Nian Wang James H. Graham Jeffrey B. Jones 《Molecular Plant Pathology》2018,19(6):1302-1318
Taxonomic status : Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range : Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties : Xcc is a rod‐shaped (1.5–2.0 × 0.5–0.75 µm), Gram‐negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution : Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe. 相似文献
3.
Cristiane R. Guzzo Chuck S. Farah 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(3):304-306
Proteins containing PilZ domains are widespread in Gram‐negative bacteria and have recently been shown to be involved in the control of biofilm formation, adherence, aggregation, virulence‐factor production and motility. Furthermore, some PilZ domains have recently been shown to bind the second messenger bis(3′→5′)cyclic diGMP. Here, the cloning, expression, purification and crystallization of PilZXAC1133, a protein consisting of a single PilZ domain from Xanthomonas axonopodis pv. citri, is reported. The closest PilZXAC1133 homologues in Pseudomonas aeruginosa and Neisseria meningitidis control type IV pilus function. Recombinant PilZXAC1133 containing selenomethionine was crystallized in space group P61. The unit‐cell parameters were a = 62.125, b = 62.125, c = 83.543 Å. These crystals diffracted to 1.85 Å resolution and a MAD data set was collected at a synchrotron source. The calculated Matthews coefficient suggested the presence of two PilZXAC1133 molecules in the asymmetric unit. 相似文献
4.
Vanessa R. Pegos Francisco Javier Medrano Andrea Balan 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(12):1604-1607
Xanthomonas axonopodis pv. citri (X. citri) is an important bacterium that causes citrus canker disease in plants in Brazil and around the world, leading to significant economic losses. Determination of the physiology and mechanisms of pathogenesis of this bacterium is an important step in the development of strategies for its containment. Phosphate is an essential ion in all microrganisms owing its importance during the synthesis of macromolecules and in gene and protein regulation. Interestingly, X. citri has been identified to present two periplasmic binding proteins that have not been further characterized: PstS, from an ATP‐binding cassette for high‐affinity uptake and transport of phosphate, and PhoX, which is encoded by an operon that also contains a putative porin for the transport of phosphate. Here, the expression, purification and crystallization of the phosphate‐binding protein PhoX and X‐ray data collection at 3.0 Å resolution are described. Biochemical, biophysical and structural data for this protein will be helpful in the elucidation of its function in phosphate uptake and the physiology of the bacterium. 相似文献
5.
Bacterial and plant natriuretic peptides improve plant defence responses against pathogens
下载免费PDF全文

Florencia A. Ficarra Carolina Grandellis Betiana S. Garavaglia Natalia Gottig Jorgelina Ottado 《Molecular Plant Pathology》2018,19(4):801-811
Plant natriuretic peptides (PNPs) have been implicated in the regulation of ions and water homeostasis, and their participation in the plant immune response has also been proposed. Xanthomonas citri ssp. citri contains a gene encoding a PNP‐like protein (XacPNP) which has no homologues in other bacteria. XacPNP mimics its Arabidopsis thaliana homologue AtPNP‐A by modifying host responses to create favourable conditions for pathogen survival. However, the ability of XacPNP to induce plant defence responses has not been investigated. In order to study further the role of XacPNP in vivo, A. thaliana lines over‐expressing XacPNP, lines over‐expressing AtPNP‐A and AtPNP‐A‐deficient plants were generated. Plants over‐expressing XacPNP or AtPNP‐A showed larger stomatal aperture and were more resistant to saline or oxidative stress than were PNP‐deficient lines. In order to study further the role of PNP in biotic stress responses, A. thaliana leaves were infiltrated with pure recombinant XacPNP, and showed enhanced expression of genes related to the defence response and a higher resistance to pathogen infections. Moreover, AtPNP‐A expression increased in A. thaliana on Pseudomonas syringae pv. tomato (Pst) infection. This evidence led us to analyse the responses of the transgenic plants to pathogens. Plants over‐expressing XacPNP or AtPNP‐A were more resistant to Pst infection than control plants, whereas PNP‐deficient plants were more susceptible and showed a stronger hypersensitive response when challenged with non‐host bacteria. Therefore, XacPNP, acquired by horizontal gene transfer, is able to mimic PNP functions, even with an increase in plant defence responses. 相似文献
6.
C. P. Santacruz A. Balan L. C. S. Ferreira J. A. R. G. Barbosa 《Acta Crystallographica. Section F, Structural Biology Communications》2006,62(3):289-291
Xanthomonas axonopodis pv. citri ModA protein is the ABC periplasmic binding component responsible for the capture of molybdate. The protein was crystallized with sodium molybdate using the hanging‐drop vapour‐diffusion method in the presence of PEG or sulfate. X‐ray diffraction data were collected to a maximum resolution of 1.7 Å using synchrotron radiation. The crystal belongs to the orthorhombic space group C2221, with unit‐cell parameters a = 68.15, b = 172.14, c = 112.04 Å. The crystal structure was solved by molecular‐replacement methods and structure refinement is in progress. 相似文献
7.
根据黄单胞菌harpin编码基因的同源性,设计简并引物,采用PCR方法从大豆斑疹病菌(Xanthomonas axonopodis pv.glycines, Xag)中克隆了402 bp的[STBX]hpa1[STBZ]同源基因,构建于表达载体pET30(a)上经转化大肠杆菌BL21菌株,获得基因工程菌BHR_3。基因工程菌诱导表达后经收集菌体和破碎细胞,得到表达产物为151kD的蛋白质。该蛋白质富含甘氨酸,不含半胱氨酸,对热稳定,对蛋白酶K敏感,可在非寄主烟草上激发过敏反应。激发的过敏反应需要植物体内水杨酸的积累,还可被真核生物代谢抑制剂抑制。序列比较显示,该基因与Xag中hpaG基因相同,与其它黄单胞菌中的hpa1基因有51.4%~93.8%的同源性,与其它革兰氏阴性植物病原细菌的harpin编码基因无同源性。据此把该基因产物鉴定为harpinXag。黄单胞菌harpin蛋白质序列比较发现,GG_GGG基序的多少并不是harpin蛋白的唯一特性。这为利用harpin蛋白开展植物病害控制的基因药物学设计提供了科学线索。 相似文献
8.
C. S. Souza L. C. S. Ferreira L. Thomas J. A. R. G. Barbosa A. Balan 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(2):105-107
Maltose‐binding protein is the periplasmic component of the ABC transporter responsible for the uptake of maltose/maltodextrins. The Xanthomonas axonopodis pv. citri maltose‐binding protein MalE has been crystallized at 293 K using the hanging‐drop vapour‐diffusion method. The crystal belonged to the primitive hexagonal space group P6122, with unit‐cell parameters a = 123.59, b = 123.59, c = 304.20 Å, and contained two molecules in the asymetric unit. It diffracted to 2.24 Å resolution. 相似文献
9.
Methyltransferases (MTases) are enzymes that modify specific substrates by adding a methyl group using S‐adenosyl‐l ‐methionine. Functions of MTases have been extensively studied in eukaryotic organisms and animal pathogenic bacteria. Despite their importance, mechanisms underlying MTase function in plant pathogenic bacteria have not been studied in depth, as is the case of Xanthomonas axonopodis pv. glycines (Xag) that causes bacterial pustule disease in soybean crops worldwide. Here, the association between Xag proteome alterations and three MTase‐overexpressing strains, Xag(XgMT1), Xag(XgMT2), and Xag(XgMT3), compared to Xag carrying an empty vector, Xag(EV) is reported. Using label‐free shotgun comparative proteomic analysis, proteins are identified in all three biological replicates of the four strains and ranged from 1004 to 1082. In comparative analyses, 124, 135, and 134 proteins are differentially changed (over twofold) by overexpression of XgMT1, XgMT2, and XgMT3, respectively. These proteins are also categorized using cluster of orthologous group (COG) analyses, allowing postulation of biological mechanisms associated with three MTases in Xag. COGs reveal that the three MTases may play distinct roles, although some functions may overlap. These results are expected to allow new insight into understanding and predicting the biological functions of MTases in plant pathogenic bacteria. Data are available via ProteomeXchange (Identifier PXD012590). 相似文献
10.
The antifungal activity of the lipodepsipeptide syringomycin E from Pseudomonas syringae pv. syringae is modulated by sterols. To study the requirement of the predominant fungal sterol, ergosterol, in syringomycin E action, the sterol composition of Saccharomyces cerevisiae sterol auxotroph strain FY-14 was modified and sensitivity to syringomycin E examined. Cells containing solely ergosterol, cholesterol, β-sitosterol or stigmasterol were sensitive to syringomycin E with the latter two being the most sensitive. Cells containing growth-promoting cholesterol were the most sensitive and those with growth-promoting ergosterol the least sensitive. It is concluded that sensitivity to syringomycin E is modulated by growth-promoting sterols and does not necessarily require ergosterol. 相似文献
11.
12.
Host factors that are important for infection of Xanthomonas campestris pv. citri by the filamentous bacteriophage cf were investigated by transposon mutagenesis with Tn5tac1. A mutant, XT501, that was resistant to cf infection was recovered, showing that the gene inactivated by the transposon
is required for infection by the phage but not for cf replication or assembly. A 1.7-kb SacI-ApaI DNA fragment from XT501 containing the bacterial DNA flanking one end of the transposon was cloned and shown to be required
for cf infection. Nucleotide sequence analysis of the 1.7-kb fragment reveals the presence of an ORF that encodes a protein
of 146 amino acids. This protein shows 42% identity to the type 4 prepilin encoded by the pilA genes of other bacteria. The pilA gene of X. campestris pv. citri is thus essential for infection by the bacteriophage cf.
Received: 30 November 1998 / Accepted: 21 April 1999 相似文献
13.
Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction
下载免费PDF全文

Juliana Artier Flávia da Silva Zandonadi Flávia Maria de Souza Carvalho Bianca Alves Pauletti Adriana Franco Paes Leme Carolina Moretto Carnielli Heloisa Sobreiro Selistre‐de‐Araujo Maria Célia Bertolini Jesus Aparecido Ferro José Belasque Júnior Julio Cezar Franco de Oliveira Maria Teresa Marques Novo‐Mansur 《Molecular Plant Pathology》2018,19(1):143-157
Citrus canker is a plant disease caused by Gram‐negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm‐enriched fraction was performed for XAC cells grown in pathogenicity‐inducing (XAM‐M) and pathogenicity‐non‐inducing (nutrient broth) media using two‐dimensional electrophoresis combined with liquid chromatography‐tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up‐regulated proteins related to cellular envelope metabolism included glucose‐1‐phosphate thymidylyltransferase, dTDP‐4‐dehydrorhamnose‐3,5‐epimerase and peptidyl‐prolyl cis–trans‐isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real‐time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up‐regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60‐kDa chaperonin and glyceraldehyde‐3‐phosphate dehydrogenase were identified, suggesting the presence of post‐translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence‐related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. 相似文献
14.
Eduardo Hilario Yang Li Dimitri Niks Li Fan 《Acta Crystallographica. Section D, Structural Biology》2012,68(7):846-853
Xanthomonas citri pv. citri (Xac) causes citrus canker and affects citrus agriculture worldwide. Functional genetic analysis has indicated that a putative general stress protein (XacGSP) encoded by the Xac2369 gene is involved in the bacterial infection. In this report, the crystal structure of XacGSP was determined to 2.5 Å resolution. There are four XacGSP molecules in the crystal asymmetric unit. Each XacGSP monomer folds into a six‐stranded antiparallel β‐barrel flanked by five α‐helices. A C‐terminal extension protrudes from the sixth β‐strand of the β‐barrel and pairs with its counterpart from another monomer to form a bridge between the two subunits of an XacGSP dimer. Two XacGSP dimers cross over each other to form a tetramer; the β‐barrels from one dimer contact the β‐barrels of the other, while the two bridges are distant from each other and do not make contacts. The three‐dimensional structure of the XacGSP monomer is very similar to those of pyridoxine 5‐phosphate oxidases, a group of enzymes that use flavin mononucleotide (FMN) as a cofactor. Consistent with this, purified XacGSP protein binds to both FMN and flavin adenine dinucleotide (FAD), suggesting that XacGSP may help the bacteria to react against the oxidative stress induced by the defense mechanisms of the plant. 相似文献
15.
16.
17.
Ebrahim Osdaghi Jeffrey B. Jones Anuj Sharma Erica M. Goss Peter Abrahamian Eric A. Newberry Neha Potnis Renato Carvalho Manoj Choudhary Mathews L. Paret Sujan Timilsina Gary E. Vallad 《Molecular Plant Pathology》2021,22(12):1500-1519
Disease symptomsSymptoms include water‐soaked areas surrounded by chlorosis turning into necrotic spots on all aerial parts of plants. On tomato fruits, small, water‐soaked, or slightly raised pale‐green spots with greenish‐white halos are formed, ultimately becoming dark brown and slightly sunken with a scabby or wart‐like surface.Host rangeMain and economically important hosts include different types of tomatoes and peppers. Alternative solanaceous and nonsolanaceous hosts include Datura spp., Hyoscyamus spp., Lycium spp., Nicotiana rustica, Physalis spp., Solanum spp., Amaranthus lividus, Emilia fosbergii, Euphorbia heterophylla, Nicandra physaloides, Physalis pubescens, Sida glomerata, and Solanum americanum.Taxonomic status of the pathogenDomain, Bacteria; phylum, Proteobacteria; class, Gammaproteobacteria; order, Xanthomonadales; family, Xanthomonadaceae; genus, Xanthomonas; species, X. euvesicatoria, X. hortorum, X. vesicatoria.Synonyms (nonpreferred scientific names) Bacterium exitiosum, Bacterium vesicatorium, Phytomonas exitiosa, Phytomonas vesicatoria, Pseudomonas exitiosa, Pseudomonas gardneri, Pseudomonas vesicatoria, Xanthomonas axonopodis pv. vesicatoria, Xanthomonas campestris pv. vesicatoria, Xanthomonas cynarae pv. gardneri, Xanthomonas gardneri, Xanthomonas perforans.Microbiological propertiesColonies are gram‐negative, oxidase‐negative, and catalase‐positive and have oxidative metabolism. Pale‐yellow domed circular colonies of 1–2 mm in diameter grow on general culture media.DistributionThe bacteria are widespread in Africa, Brazil, Canada and the USA, Australia, eastern Europe, and south‐east Asia. Occurrence in western Europe is restricted.Phytosanitary categorizationA2 no. 157, EU Annex designation II/A2.EPPO codesXANTEU, XANTGA, XANTPF, XANTVE. 相似文献
18.
用硫酸二乙酯(DES)诱变水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,简称Xoo)和条斑病细菌(Xanthomonas oryzae pv. oryzicola, 简称Xooc),分别得到5株和13株黄色素缺失突变体,其中来自Xooc的M6和M12 还丧失了对水稻的致病性和在烟草上激发过敏反应的能力。以Xooc黄色素缺失突变体M51为受体菌交叉互补从Xoo JXOIII基因文库中筛选出一个黄色素合成相关的基因克隆pA341,以Xoo黄色素缺失突变体M1071为受体菌,从Xooc RS105基因文库中获得了一个黄色素合成相关的基因克隆pA270。功能互补显示,18株黄色素缺失突变体中的10株能分别被pA341和 pA270互补后正常产生黄色素,但这两个克隆不能同时互补同一株黄色素缺失突变体。能被pA341互补的黄色素缺失突变体M6没有恢复对水稻的致病性和在烟草上激发过敏反应,表明黄色素合成相关基因与hrp基因间不存在相关性。斑点杂交结果表明,pA270与pA341之间没有同源性。pA270亚克隆结果显示,与黄色素合成相关的基因约11.6kb大小,以基因簇的形式存在,不仅决定了黄色素的产生,还影响黄色素合成的数量和质量(吸收峰)。在紫外光条件下,黄色素能够提高菌体的存活率,提示黄色素对病原细菌有保护作用。 相似文献
19.
Ying Xu Xiao‐Fen Zhu Ming‐Guo Zhou Jing Kuang Yong Zhang Yu Shang Jian‐Xin Wang 《Journal of Phytopathology》2010,158(9):601-608
Rice leaves with bacterial blight or bacterial leaf streak symptoms were collected in southern China in 2007 and 2008. Five hundred and thirty‐four single‐colony isolates of Xanthomonas oryzae pv. oryzae and 827 single‐colony isolates of Xanthomonas oryzae pv. oryzicola were obtained and tested on plates for sensitivity to streptomycin. Four strains (0.75%) of X. oryzae pv. oryzae isolated from the same county of Province Yunnan were resistant to streptomycin, and the resistance factor (the ratio of the mean median effective concentration inhibiting growth of resistant isolates to that of sensitive isolates) was approximately 226. The resistant isolate also showed streptomycin resistance in vivo. In addition to resistant isolates, isolates of less sensitivity were also present in the population of X. oryzae pv. oryzae from Province Yunnan. However, no isolates with decreased streptomycin‐sensitivity were obtained from the population of X. oryzae pv. oryzicola. Mutations in the rpsL (encoding S12 protein) and rrs genes (encoding 16S rRNA) and the presence of the strA gene accounting for streptomycin resistance in other phytopathogens or animal and human pathogenic bacteria were examined on sensitive and resistant strains of X. oryzae pv. oryzae by polymerase chain reaction amplification and sequencing. Neither the presence of the strA gene nor mutations in the rpsL or rrs were found, suggesting that different resistance mechanisms are involved in the resistant isolates of X. oryzae pv. oryzae. 相似文献
20.
【目的】旨在揭示水稻白叶枯病菌(Xanthomonas oryzaepv.oryzae,Xoo)致病性和运动性及其基因表达的调控途径。【方法】本研究通过基因克隆、序列分析和缺失突变方法,对与应答调节子GacAxoo互作的Tdrxoo的分子特征和功能进行了鉴定。【结果】利用序列特异性引物进行基因扩增,成功地从野生型菌株PXO99A中克隆了tdrxoo基因。Tdrxoo与其它病原黄单胞菌的同源序列高度保守,具有TonB-Dependent-Receptor(TDR)结构域,推测其是位于细菌外膜、可能接收来自细菌体外环境信号的蛋白。用基因标记交换法,构建了△tdrxoo基因缺失突变体。与PXO99A相比,Δtdrxoo在人工培养条件下的生长受到影响,致病性完全丧失,胞外纤维素酶和木聚糖酶活性和运动能力显著减弱,基因互补可以使之恢复;Δtdrxoo嗜铁素产生无明显改变。【结论】Tdrxoo作为一种细胞外膜蛋白,可能参与调控了病菌的生长、致病性、胞外酶活性和运动性等表型。 相似文献