首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.  相似文献   

2.
We present here an extended protein-RNA docking benchmark composed of 71 test cases in which the coordinates of the interacting protein and RNA molecules are available from experimental structures, plus an additional set of 35 cases in which at least one of the interacting subunits is modeled by homology. All cases in the experimental set have available unbound protein structure, and include five cases with available unbound RNA structure, four cases with a pseudo-unbound RNA structure, and 62 cases with the bound RNA form. The additional set of modeling cases comprises five unbound-model, eight model-unbound, 19 model-bound, and three model-model protein-RNA cases. The benchmark covers all major functional categories and contains cases with different degrees of difficulty for docking, as far as protein and RNA flexibility is concerned. The main objective of this benchmark is to foster the development of protein-RNA docking algorithms and to contribute to the better understanding and prediction of protein-RNA interactions. The benchmark is freely available at http://life.bsc.es/pid/protein-rna-benchmark.  相似文献   

3.
The three key challenges addressed in our development of SPECITOPE , a tool for screening large structural databases for potential ligands to a protein, are to eliminate infeasible candidates early in the search, incorporate ligand and protein side-chain flexibility upon docking, and provide an appropriate rank for potential new ligands. The protein ligand-binding site is modeled by a shell of surface atoms and by hydrogen-bonding template points for the ligand to match, conferring specificity to the interaction. SPECITOPE combinatorially matches all hydrogen-bond donors and acceptors of the screened molecules to the template points. By eliminating molecules that cannot match distance or hydrogen-bond constraints, the transformation of potential docking candidates into the ligand-binding site and the shape and hydrophobic complementarity evaluations are only required for a small subset of the database. SPECITOPE screens 140,000 peptide fragments in about an hour and has identified and docked known inhibitors and potential new ligands to the free structures of four distinct targets: a serine protease, a DNA repair enzyme, an aspartic proteinase, and a glycosyltransferase. For all four, protein side-chain rotations were critical for successful docking, emphasizing the importance of inducible complementarity for accurately modeling ligand interactions. SPECITOPE has a range of potential applications for understanding and engineering protein recognition, from inhibitor and linker design to protein docking and macromolecular assembly. Proteins 33:74–87, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
G Moont  H A Gabb  M J Sternberg 《Proteins》1999,35(3):364-373
Empirical residue-residue pair potentials are used to screen possible complexes for protein-protein dockings. A correct docking is defined as a complex with not more than 2.5 A root-mean-square distance from the known experimental structure. The complexes were generated by "ftdock" (Gabb et al. J Mol Biol 1997;272:106-120) that ranks using shape complementarity. The complexes studied were 5 enzyme-inhibitors and 2 antibody-antigens, starting from the unbound crystallographic coordinates, with a further 2 antibody-antigens where the antibody was from the bound crystallographic complex. The pair potential functions tested were derived both from observed intramolecular pairings in a database of nonhomologous protein domains, and from observed intermolecular pairings across the interfaces in sets of nonhomologous heterodimers and homodimers. Out of various alternate strategies, we found the optimal method used a mole-fraction calculated random model from the intramolecular pairings. For all the systems, a correct docking was placed within the top 12% of the pair potential score ranked complexes. A combined strategy was developed that incorporated "multidock," a side-chain refinement algorithm (Jackson et al. J Mol Biol 1998;276:265-285). This placed a correct docking within the top 5 complexes for enzyme-inhibitor systems, and within the top 40 complexes for antibody-antigen systems.  相似文献   

5.
6.
Müller W  Sticht H 《Proteins》2007,67(1):98-111
In this work, we developed a protein-specifically adapted scoring function and applied it to the reranking of protein-protein docking solutions generated with a conventional docking program. The approach was validated using experimentally determined structures of the bacterial HPr-protein in complex with four structurally nonhomologous binding partners as an example. A sufficiently large data basis for the generation of protein-specifically adapted pair potentials was generated by modeling all orthologous complexes for each type of interaction resulting in a total of 224 complexes. The parameters for potential generation were systematically varied and resulted in a total of 66,132 different scoring functions that were tested for their ability of successful reranking of 1000 docking solutions generated from modeled structures of the unbound binding partners. Parameters that proved critical for the generation of good scoring functions were the distance cutoff used for the generation of the pair potential, and an additional cutoff that allows a proper weighting of conserved and nonconserved contacts in the interface. Compared to the original scoring function, application of this novel type of scoring functions resulted in a significant accumulation of acceptable docking solutions within the first 10 ranks. Depending on the type of complex investigated one to five acceptable complex geometries are found among the 10 highest-ranked solutions and for three of the four systems tested, an acceptable solution was placed on the first rank.  相似文献   

7.
8.
Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. SymmRef is available for download at http:// bioinfo3d.cs.tau.ac.il/SymmRef/download.html.  相似文献   

9.
The C repressor protein of phage 16-3, which is required for establishing and maintaining lysogeny, recognizes structurally different operators which differ by 2 bp in the length of the spacer between the conserved palindromic sequences. A "rotationally flexible protein homodimers" model has been proposed in order to explain the conformational adaptivity of the 16-3 repressor. In this paper, we report on the isolation of a repressor mutant with altered binding specificity which was used to identify a residue-base pair contact and to monitor the spatial relationship of the recognition helix of C repressor to the contacting major groove of DNA within the two kinds of repressor-operator complexes. Our results indicate spatial differences at the interface which may reflect different docking arrangements in recognition of the structurally different operators by the 16-3 repressor.  相似文献   

10.
Accurate prediction of protein-DNA complexes could provide an important stepping stone towards a thorough comprehension of vital intracellular processes. Few attempts were made to tackle this issue, focusing on binding patch prediction, protein function classification and distance constraints-based docking. We introduce ParaDock: a novel ab initio protein-DNA docking algorithm. ParaDock combines short DNA fragments, which have been rigidly docked to the protein based on geometric complementarity, to create bent planar DNA molecules of arbitrary sequence. Our algorithm was tested on the bound and unbound targets of a protein-DNA benchmark comprised of 47 complexes. With neither addressing protein flexibility, nor applying any refinement procedure, CAPRI acceptable solutions were obtained among the 10 top ranked hypotheses in 83% of the bound complexes, and 70% of the unbound. Without requiring prior knowledge of DNA length and sequence, and within <2?h per target on a standard 2.0?GHz single processor CPU, ParaDock offers a fast ab initio docking solution.  相似文献   

11.
We investigate the extent to which the conformational fluctuations of proteins in solution reflect the conformational changes that they undergo when they form binary protein-protein complexes. To do this, we study a set of 41 proteins that form such complexes and whose three-dimensional structures are known, both bound in the complex and unbound. We carry out molecular dynamics simulations of each protein, starting from the unbound structure, and analyze the resulting conformational fluctuations in trajectories of 5 ns in length, comparing with the structure in the complex. It is found that fluctuations take some parts of the molecules into regions of conformational space close to the bound state (or give information about it), but at no point in the simulation does each protein as whole sample the complete bound state. Subsequent use of conformations from a clustered MD ensemble in rigid-body docking is nevertheless partially successful when compared to docking the unbound conformations, as long as the unbound conformations are themselves included with the MD conformations and the whole globally rescored. For one key example where sub-domain motion is present, a ribonuclease inhibitor, principal components analysis of the MD was applied and was also able to produce conformations for docking that gave enhanced results compared to the unbound. The most significant finding is that core interface residues show a tendency to be less mobile (by size of fluctuation or entropy) than the rest of the surface even when the other binding partner is absent, and conversely the peripheral interface residues are more mobile. This surprising result, consistent across up to 40 of the 41 proteins, suggests different roles for these regions in protein recognition and binding, and suggests ways that docking algorithms could be improved by treating these regions differently in the docking process.  相似文献   

12.
A protein-protein docking approach has been developed based on a reduced protein representation with up to three pseudo atoms per amino acid residue. Docking is performed by energy minimization in rotational and translational degrees of freedom. The reduced protein representation allows an efficient search for docking minima on the protein surfaces within. During docking, an effective energy function between pseudo atoms has been used based on amino acid size and physico-chemical character. Energy minimization of protein test complexes in the reduced representation results in geometries close to experiment with backbone root mean square deviations (RMSDs) of approximately 1 to 3 A for the mobile protein partner from the experimental geometry. For most test cases, the energy-minimized experimental structure scores among the top five energy minima in systematic docking studies when using both partners in their bound conformations. To account for side-chain conformational changes in case of using unbound protein conformations, a multicopy approach has been used to select the most favorable side-chain conformation during the docking process. The multicopy approach significantly improves the docking performance, using unbound (apo) binding partners without a significant increase in computer time. For most docking test systems using unbound partners, and without accounting for any information about the known binding geometry, a solution within approximately 2 to 3.5 A RMSD of the full mobile partner from the experimental geometry was found among the 40 top-scoring complexes. The approach could be extended to include protein loop flexibility, and might also be useful for docking of modeled protein structures.  相似文献   

13.
Computational docking approaches are important as a source of protein-protein complexes structures and as a means to understand the principles of protein association. A key element in designing better docking approaches, including search procedures, potentials, and scoring functions is their validation on experimentally determined structures. Thus, the databases of such structures (benchmark sets) are important. The previous, first release of the DOCKGROUND resource (Douguet et al., Bioinformatics 2006; 22:2612-2618) implemented a comprehensive database of cocrystallized (bound) protein-protein complexes in a relational database of annotated structures. The current release adds important features to the set of bound structures, such as regularly updated downloadable datasets: automatically generated nonredundant set, built according to most common criteria, and a manually curated set that includes only biological nonobligate complexes along with a number of additional useful characteristics. The main focus of the current release is unbound (experimental and simulated) protein-protein complexes. Complexes from the bound dataset are used to identify crystallized unbound analogs. If such analogs do not exist, the unbound structures are simulated by rotamer library optimization. Thus, the database contains comprehensive sets of complexes suitable for large scale benchmarking of docking algorithms. Advanced methodologies for simulating unbound conformations are being explored for the next release. The future releases will include datasets of modeled protein-protein complexes, and systematic sets of docking decoys obtained by different docking algorithms. The growing DOCKGROUND resource is designed to become a comprehensive public environment for developing and validating new docking methodologies.  相似文献   

14.
Accommodating backbone flexibility continues to be the most difficult challenge in computational docking of protein-protein complexes. Towards that end, we simulate four distinct biophysical models of protein binding in RosettaDock, a multiscale Monte-Carlo-based algorithm that uses a quasi-kinetic search process to emulate the diffusional encounter of two proteins and to identify low-energy complexes. The four binding models are as follows: (1) key-lock (KL) model, using rigid-backbone docking; (2) conformer selection (CS) model, using a novel ensemble docking algorithm; (3) induced fit (IF) model, using energy-gradient-based backbone minimization; and (4) combined conformer selection/induced fit (CS/IF) model. Backbone flexibility was limited to the smaller partner of the complex, structural ensembles were generated using Rosetta refinement methods, and docking consisted of local perturbations around the complexed conformation using unbound component crystal structures for a set of 21 target complexes. The lowest-energy structure contained > 30% of the native residue-residue contacts for 9, 13, 13, and 14 targets for KL, CS, IF, and CS/IF docking, respectively. When applied to 15 targets using nuclear magnetic resonance ensembles of the smaller protein, the lowest-energy structure recovered at least 30% native residue contacts in 3, 8, 4, and 8 targets for KL, CS, IF, and CS/IF docking, respectively. CS/IF docking of the nuclear magnetic resonance ensemble performed equally well or better than KL docking with the unbound crystal structure in 10 of 15 cases. The marked success of CS and CS/IF docking shows that ensemble docking can be a versatile and effective method for accommodating conformational plasticity in docking and serves as a demonstration for the CS theory—that binding-competent conformers exist in the unbound ensemble and can be selected based on their favorable binding energies.  相似文献   

15.
Protein and RNA molecules interact and form complexes in many biological processes. However, it is still unclear how they can find the correct docking direction before forming complex. In this paper, we study preorientation of RNA and protein separated at a distance of 5–7?Å just before they form contacts and interact with each other only through pure electrostatic interaction when neglecting the influence of other molecules and complicated environment. Since geometric complementary has no meaning at such a distance, this is not a docking problem and so the conventional docking methods, like FTDock, are inapplicable. However, like the usual docking problem, we need to sample all the positions and orientations of RNA surrounding the protein to find the lowest energy orientations between RNA and protein. Therefore, we propose a long-range electrostatic docking-like method using Fast Fourier Transform-based sampling, LEDock, to study this problem. Our results show that the electrostatically induced orientations between RNA and protein at a distance of 5–7?Å are very different from the random ones and are much closer to those in their native complexes. Meanwhile, electrostatic funnels are found around the RNA-binding sites of the proteins in 62 out of 78 bound protein–RNA complexes. We also tried to use LEDock to find RNA-binding residues and it seems to perform slightly better than BindN Server for 23 unbound protein–RNA complexes.  相似文献   

16.
Structural characterization of protein-protein interactions is essential for our ability to study life processes at the molecular level. Computational modeling of protein complexes (protein docking) is important as the source of their structure and as a way to understand the principles of protein interaction. Rapidly evolving comparative docking approaches utilize target/template similarity metrics, which are often based on the protein structure. Although the structural similarity, generally, yields good performance, other characteristics of the interacting proteins (eg, function, biological process, and localization) may improve the prediction quality, especially in the case of weak target/template structural similarity. For the ranking of a pool of models for each target, we tested scoring functions that quantify similarity of Gene Ontology (GO) terms assigned to target and template proteins in three ontology domains—biological process, molecular function, and cellular component (GO-score). The scoring functions were tested in docking of bound, unbound, and modeled proteins. The results indicate that the combined structural and GO-terms functions improve the scoring, especially in the twilight zone of structural similarity, typical for protein models of limited accuracy.  相似文献   

17.
Protein docking using spherical polar Fourier correlations   总被引:20,自引:0,他引:20  
Ritchie DW  Kemp GJ 《Proteins》2000,39(2):178-194
We present a new computational method of docking pairs of proteins by using spherical polar Fourier correlations to accelerate the search for candidate low-energy conformations. Interaction energies are estimated using a hydrophobic excluded volume model derived from the notion of "overlapping surface skins," augmented by a rigorous but "soft" model of electrostatic complementarity. This approach has several advantages over former three-dimensional grid-based fast Fourier transform (FFT) docking correlation methods even though there is no analogue to the FFT in a spherical polar representation. For example, a complete search over all six rigid-body degrees of freedom can be performed by rotating and translating only the initial expansion coefficients, many unfeasible orientations may be eliminated rapidly using only low-resolution terms, and the correlations are easily localized around known binding epitopes when this knowledge is available. Typical execution times on a single processor workstation range from 2 hours for a global search (5 x 10(8) trial orientations) to a few minutes for a local search (over 6 x 10(7) orientations). The method is illustrated with several domain dimer and enzyme-inhibitor complexes and 20 large antibody-antigen complexes, using both the bound and (when available) unbound subunits. The correct conformation of the complex is frequently identified when docking bound subunits, and a good docking orientation is ranked within the top 20 in 11 out of 18 cases when starting from unbound subunits. Proteins 2000;39:178-194.  相似文献   

18.
We extend our previous analysis of binding specificity of DNA-protein complexes to complexes containing water-mediated bridges. Inclusion of water bridges between phosphate and base, phosphate and sugar, as well as proteins and DNA, improves the prediction of specificity; six data sets studied in this paper yield correct predictions for all base pairs that have two or more hydrogen-bonds. Beside massive computation, our approach relies highly on experimental data. After deriving protein structures from DNA-protein complexes in which coordinates were established by X-ray diffraction techniques, we analysed all possible DNA sequences to which these proteins might bind, ranking them in terms of Lennard-Jones potential for the optimal docking configuration. Our prediction algorithm rests on the following assumptions: (1) specificity comes mainly from direct hydrogen bonding; (2) electrostatic forces stabilise DNA-protein complexes and contribute only weakly to specificity since they occur at the charged phosphate groups; (3) Van der Waals forces and electrostatic interactions between positively charged groups on the protein and phosphates on DNA can be neglected as they contribute primarily to the free energy of stabilisation as opposed to specificity.  相似文献   

19.
BiGGER: a new (soft) docking algorithm for predicting protein interactions   总被引:13,自引:0,他引:13  
A new computationally efficient and automated "soft docking" algorithm is described to assist the prediction of the mode of binding between two proteins, using the three-dimensional structures of the unbound molecules. The method is implemented in a software package called BiGGER (Bimolecular Complex Generation with Global Evaluation and Ranking) and works in two sequential steps: first, the complete 6-dimensional binding spaces of both molecules is systematically searched. A population of candidate protein-protein docked geometries is thus generated and selected on the basis of the geometric complementarity and amino acid pairwise affinities between the two molecular surfaces. Most of the conformational changes observed during protein association are treated in an implicit way and test results are equally satisfactory, regardless of starting from the bound or the unbound forms of known structures of the interacting proteins. In contrast to other methods, the entire molecular surfaces are searched during the simulation, using absolutely no additional information regarding the binding sites. In a second step, an interaction scoring function is used to rank the putative docked structures. The function incorporates interaction terms that are thought to be relevant to the stabilization of protein complexes. These include: geometric complementarity of the surfaces, explicit electrostatic interactions, desolvation energy, and pairwise propensities of the amino acid side chains to contact across the molecular interface. The relative functional contribution of each of these interaction terms to the global scoring function has been empirically adjusted through a neural network optimizer using a learning set of 25 protein-protein complexes of known crystallographic structures. In 22 out of 25 protein-protein complexes tested, near-native docked geometries were found with C(alpha) RMS deviations < or =4.0 A from the experimental structures, of which 14 were found within the 20 top ranking solutions. The program works on widely available personal computers and takes 2 to 8 hours of CPU time to run any of the docking tests herein presented. Finally, the value and limitations of the method for the study of macromolecular interactions, not yet revealed by experimental techniques, are discussed.  相似文献   

20.
A structural model for the interaction of the LexA repressor DNA binding domain (DBD) with operator DNA is derived by means of Monte Carlo docking. Protein–DNA complexes were generated by docking the LexA repressor DBD NMR solution structure onto both rigid and bent B-DNA structures while giving energy bonuses for contacts in agreement with experimental data. In the resulting complexes, helix III of the LexA repressor DBD is located in the major groove of the DNA and residues Asn-41, Glu-44, and Glu-45 form specific hydrogen bonds with bases of the CTGT DNA sequence. Ser-39, Ala-42, and Asn-41 are involved in a hydrophobic interaction with the methyl group of the first thymine base. Residues in the loop region connecting the two β-sheet strands are involved in nonspecific contacts near the dyad axis of the operator. The contacts observed in the docked complexes cover the entire consensus CTGT half-site DNA operator, thus explaining the specificity of the LexA repressor for such sequences. In addition, a large number of nonspecific interactions between protein and DNA is observed. The agreement between the derived model for the LexA repressor DBD/DNA complex and experimental biochemical results is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号