首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee S  Lee YA  Lee HM  Lee JY  Kim DH  Kim SK 《Biophysical journal》2002,83(1):371-381
By utilizing circular and linear dichroism, the binding mode of meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (n = 2, 3, 4) to various DNAs was studied in this work. 2-N-(methylpyridiniumyl)porphyrin(o-TMPyP), in which rotation of the periphery pyridinium ring is prevented, exhibits similar spectral properties when bound to DNA, poly[d(G-C)(2)] and poly[d(A-T)(2)], suggesting a similar binding mode. Close analysis of the spectral properties led us to conclude that o-TMPyP sits in the major groove. However, both 3-N- and 4-N-(methylpyridiniumyl)porphyrin (m- and p-TMPyP), of which the periphery pyridinium ring is free to rotate, intercalate between the basepairs of DNA and poly[d(G-C)(2)]. In the presence of poly[d(A-T)(2)], m-TMPyP exhibits a typical bisignate excitonic CD spectrum in the Soret band, while p-TMPyP shows two positive CD bands. The excitonic CD spectrum of the m-TMPyP-poly[d(A-T)(2)] complex and the positive CD band of the o-TMPyP-poly[d(A-T)(2)] complex were not affected by the presence of the minor groove binding drug, 4',6-diamidino-2-phenylindole (DAPI), indicating that this porphyrin is bound in the major groove. In contrast, two positive CD bands of the p-TMPyP-poly[d(A-T)(2)] complex altered in the presence of DAPI. From the changes in CD spectrum and other spectral properties, a few possible binding modes for p-TMPyP to poly[d(A-T)(2)] are suggested.  相似文献   

2.
The interactions between water-soluble cationic oxovanadyl[meso-tetrakis(4-N-methylpyridiumyl)]porphyrin (VOTMPyP) and various synthetic polynucleotide including poly[d(A-T)2], poly[d(G-C)2], and poly[d(I-C)2] were studied using absorption, circular dichroism (CD), and linear dichroism (LD) spectroscopy. When VOTMPyP formed a complex with poly[d(A-T)2] and poly[d(I-C)2], a positive CD signal at low [VOTMPyP]/[DNA] ratios (R ratios) and strong excitonic CD signals at above R > or = 0.15 were induced. The appearance of the CD spectra of the VOTMPyP-poly[d(G-C)2] complex were very different: a small negative CD at low R ratios and very small excitonic CD at high R ratios were observed. Considering the facts that the minor grooves of the former two polynucleotides resemble and the major groove of poly[d(I-C)2] is similar with that of poly[d(G-C)2], it is conclusive that VOTMPyP binds to the minor groove of all DNA at lower R ratios while they stack at the outside of DNA at higher R ratios. The binding geometry of VOTMPyP to all polynucleotides studied by LD seemed to be homogenous, irrespective of the R ratio. It has been found that VOTMPyP can have five- and six-fluxional coordination states. Comparing the absorption spectra of VOTMPyP complexed with poly[d(A-T)2] and poly[d(G-C)2], the distinctive absorptions of the five- and six-coordinated species were observed at lower R ratios which centered at 420-430 nm and 442 nm, respectively. While the six-coordinated VOTMPyP favored the poly[d(A-T)2], the five-coordinated species favored the poly[d(G-C)2] at the low R ratios. As the stacked species increased with an increasing R ratio, the six-coordinated species became the major bound species. These observations lead us to conclude that the guanine base' amino group plays a crucial role not only in determining the binding mode of VOTMPyP but also in the conversion of the six-coordinated species to the five-coordinated species.  相似文献   

3.
The complexes of Hoechst 33258 with poly[d(A-T)2], poly[d(I-C)2], poly[d(G-C)2], and poly[d(G-m5C)2] were studied using linear dichroism, CD, and fluorescence spectroscopies. The Hoechst-poly[d(I-C)2] complex, in which there is no guanine amino group protruding in the minor groove, exhibits spectroscopic properties that are very similar to those of the Hoechst-poly[d(A-T)2] complex. When bound to both of these polynucleotides, Hoechst exhibits an average orientation angle of near 45° relative to the DNA helix axis for the long-axis polarized low-energy transition, a relatively strong positive induced CD, and a strong increase in fluorescence intensity—leading us to conclude that this molecule also binds in the minor groove of poly[d(I-C)2]. By contrast, when bound to poly[d(G-C)2] and poly[d(G-m5C)2], Hoechst shows a distinctively different behavior. The strongly negative reduced linear dichroism in the ligand absorption region is consistent with a model in which part of the Hoechst chromophore is intercalculated between DNA bases. From the low drug:base ratio onset of excitonic effects in the CD and fluorescence emission spectra, it is inferred that another part of the Hoechst molecule may sit in the major groove of poly[d(G-C)2] and poly[d(G-m5C)2] and preferentially stacks into dimers, though this tendency is strongly reduced for the latter polynucleotide. Based on these results, the importance of the interactions of Hoechst with the exocyclic amino group of guanine and the methyl group of cytosine in determining the binding modes are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove.  相似文献   

5.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins.  相似文献   

6.
The binding of polyamines, including spermidine ( 1 ) and spermine ( 2 ), to poly[d(G-C) · d(G-C) ] was probed using spectroscopic studies of anthracene-9-carbonyl-N1-spermine ( 3 ); data from normal absorption, linear dichroism (LD), and circular dichroism (CD) are reported. Ligand LD and CD for transitions located in the DNA region of the spectrum were used. The data show that 3 binds to DNA in a manner characteristic of both its amine and polycyclic aromatic parts. With poly [(dG-dC) · (dG-dC)], binding modes are occupied sequentially and different modes correspond to different structural perturbations of the DNA. The most stable binding mode for 3 with poly[d(G-C) · d(G-C)] has a site size of 6 ± 1 bases, and an equilibrium binding constant of (2.2 ± 1.1) × 107 M?1 with the anthracene moiety intercalated. It dominates the spectra from mixing ratios of approximately 133:1 until 6:1 DNA phosphate: 3 is reached. The analogous data for poly [d(A-T) · d(A-T)] between mixing ratios 36:1 and 7:1 indicates a site size of 8.3 ± 1.1 bases and an equilibrium binding constant of (6.6 ± 3.3) × 105 M?1. Thus, 3 binds preferentially to poly [d(G-C) · d(G-C)] at these concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The binding mode of norfloxacin, a quinolone antibacterial agent, in the synthetic polynucleotides poly[d(G-C)2], poly[d(I-C)2] and poly[d(A-T)2] was studied using polarized light spectroscopy, fluorescence spectroscopy and melting profiles. The absorption, circular and linear dichroism properties of norfloxacin are essentially the same for all the complexes, and the angle of electric transition dipole moment I and II of norfloxacin relative to the DNA helix axis is measured as 68-75 degrees for all complexes. These similarities indicate that the binding mode of norfloxacin is similar for all the polynucleotides. The decrease in the linear dichroism (LD) magnitude at 260 nm upon binding norfloxacin, which is strongest for the norfloxacin-poly[d(G-C)2] complex, and the identical melting temperature of poly[d(A-T)2] and poly[d(I-C)2] in the presence and absence of norfloxacin rule out the possibility of classic intercalation and minor groove binding. However, the characteristics of the fluorescence emission spectra of norfloxacin bound to poly[d(A-T)2] and to poly[d(I-C)2] are similar but are different to that of norfloxacin bound to poly[d(G-C)2]. As the amine group of the guanine base protrudes to the minor groove, this result strongly suggests that norfloxacin binds in the minor groove of B-form DNA in a nonclassic manner.  相似文献   

8.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

9.
The interactions of two positional isomers and one analogue of meso-tetra (4-N-methylpyridyl) porphine, with the synthetic polynucleotides poly[d(A-T)] . poly[d(A-T)] and poly[d(G-C)] . poly[d(G-C)] have been investigated by circular dichroism. All four porphyrins were found to bind to the polynucleotides as shown by the induction of circular dichroism in their Soret bands. Furthermore, the sign of the induced ellipticity reflects selective occupation of binding sites by the porphyrin ligands. The conformational lability of poly[d(A-T)] X poly[d(A-T)] was found to be appreciable as micromolar amounts of meso-substituted 4-N-methylpyridyl, 3-N-methylpyridyl, and p-N-trimethylanilinium porphines induced a CD spectrum similar but not identical to that of DNA in the Z-form, i.e. a negative band at 280 nm and a positive band at 259 nm. The effect of porphyrin binding to poly[d(G-C)] X poly[d(G-C)] was less pronounced and dissimilar to that seen in the AT polymer.  相似文献   

10.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

11.
Interaction of a macrocyclic bisacridine with DNA   总被引:1,自引:0,他引:1  
The binding of the macrocycle SDM to DNA was investigated by visible spectroscopy, stopped-flow kinetics, and NMR spectroscopy. SDM is composed of two 9-aminoacridines linked via the amino groups by a spermine side chain and via the 4-positions by a N,N'-[(methylthio)ethyl]succinamide side chain [Zimmerman, S. C., Lamberson, C. R., Cory, M., & Fairley, T. A. (1989) J. Am. Chem. Soc. 111, 6805-6809]. The visible spectrum of SDM bound to poly[d(A-T)]2 or poly[d(G-C)]2 is red-shifted relative to the spectrum of SDM alone and displays considerable hypochromicity. Results from titrations of SDM with polymer indicate a binding site size of three base pairs per macrocycle. The dissociation constant for SDM bound to either poly[d(A-T)]2 or poly[d(G-C)]2 is an order of magnitude lower than that for a similar bisacridine linked only by a spermine side chain. In addition, the dependence of the dissociation constant on ionic strength is significantly reduced. NMR studies of SDM complexes with poly[d(A-T)]2 or a tetramer, d(CGCG)2, show that intercalation is the mode of binding. The magnitudes of the chemical shift differences for SDM aromatic protons in the free and bound states support intercalation with the acridine ring systems essentially parallel to the long axis of the base pairs. Cross peaks from NOESY spectra of the SDM complex with d(CGCG)2 further support this mode of binding and provide information on the structure of the complex. The results are analyzed for consistency with each of three binding models: (i) bisintercalation with the two side chains in the same groove; (ii) bisintercalation according to the neighbor-exclusion principle with the two side chains in opposite grooves; and (iii) bisintercalation with two side chains in opposite grooves but with violation of the neighbor-exclusion principle. Model i is found to be unlikely on the basis of all evidence obtained, including preliminary modeling studies. Both models ii and iii can be reconciled with the experimental evidence and from a modeling standpoint are energetically feasible.  相似文献   

12.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

13.
Sequence-dependent variation in the conformation of DNA   总被引:50,自引:0,他引:50  
The specificity of action of the enzyme DNAase I on double-stranded DNA polymers of defined sequence has been investigated. The results obtained with the alternating copolymers poly[d(A-T)] · poly[d(A-T)] and poly[d(G-C)] · poly[d(G-C)] support the suggestion of Klug et al. (1979) that regions of double-stranded DNA containing alternating purine-pyrimidine sequences may exist as structural variants of the classical B-form under physiological salt conditions. Digestion of defined oligomers containing alternating dG-dC sequences indicate that these too exist in some “alternating-B” structure in solution under similar conditions. The results obtained with the oligomers also provide a number of insights into the mode of action of DNAase I.In the case of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G), for which the crystal structure has been solved (Dickerson &; Drew, 1981), there is a very good correlation between the sites of rapid DNAase I cutting and positions of high local helical twist.  相似文献   

14.
Interactions of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin [TMpyP(4)] with poly[d(G-C)].poly[d(G-C)] [poly[d(G-C)2] and poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2] were studied by equilibrium dialysis and stopped-flow dissociation kinetics as a function of [Na+]. Metalloderivatives of TMpyP(4), NiTMpyP(4), and ZnTMpyP(4) were also investigated. The apparent equilibrium binding constants (Kobs) were approximately the same for TMpyP(4) binding to either poly[d(G-C)2] or poly[d(A-T)2] and decreased with increasing [Na+]. The slopes of the plots of log Kobs vs log [Na+] were similar, with values close to -2.7. Contrary to implications in previously reported studies, these data do not indicate that TMpyP(4) prefers to bind to GC sites at low ionic strength and to AT sites at high ionic strength. In contrast, binding of ZnTMpyP(4) to these two polymers is very different. Comparisons of Kobs values at 0.065 M [Na+] indicate that ZnTMpyP(4) binding to AT sites is approximately 200 times more favorable than binding to GC sites, a finding in agreement with previous qualitative observations. Although the binding of the Zn species to the GC polymer was too weak for us to assess the salt effect, the plot of log Kobs vs log [Na+] gave a slope of -2.0 for ZnTMpyP(4) binding to poly[d(A-T)2]. Application of condensation theory for polyelectrolytes suggests similar charge interactions for ZnTMpyP(4) and for TMpyP(4) binding to poly[d(A-T)2]. Likewise, the rates of dissociation from poly[d(A-T)2] were similar for TMpyP(4) and ZnTMpyP(4) [and also NiTMpyP(4)]. However, whereas TMpyP(4) [and NiTMpyP(4)] dissociation from poly[d(G-C)2] was measurable, that for ZnTMpyP(4) was too fast to measure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

16.
Factors influencing the binding of tetracationic porphyrin derivatives to DNA have been comprehensively evaluated by equilibrium dialysis, stopped-flow kinetics, etc., for mesotetrakis (4-N-methylpyridiniumyl)porphyrin [TMpyP (4)]. Technical difficulties have previously precluded a comprehensive study of metalloporphyrins. Since electrostatic interactions with the DNA and metal derivatization of the porphyrins have important consequences, we have investigated in greater detail two isomers of TMpyP (4) (meso-tetrakis(3-N-methylpyridiniumyl)porphyrin, [TMpyP (3)] and meso-tetrakis(2-N-methylpyridiniumyl)porphyrin [TMpyP (2)]) in which the position of the charged centers has been varied. A comprehensive study of the Cu(II) derivatives, e.g., CuTMpyP (4), was possible since the difficulties encountered previously with Ni(II) compounds were not a problem with Cu(II) porphyrins [J. A. Strickland, L. G. Marzilli, M. K. Gay, and W. D. Wilson (1988) Biochemistry 27, 8870-8878]. At 25 degrees C, the apparent equilibrium constants [Kobs] decreased with increasing [Na+] for all porphyrins. The Kobs values were comparable for TMpyP (4) and TMpyP (3) binding to either polyd(G-C).polyd(G-C) [poly[d(G-C)2]] or poly[d(A-T)].poly[d(A-T)] [poly[d(A-T)2]]. For the copper(II) porphyrins, the Kobs values were about fivefold greater. The Kobs value for CuTMpyP (2) binding to poly[d(G-C)2] was too small to measure under typical salt conditions; however, Kobs for binding to poly[d(A-T)2] was about two orders of magnitude smaller than those found for CuTMpyP (4) or CuTMpyP (3). Application of the condensation theory for polyelectrolytes suggests about three charge interactions when CuTMpyP (4), CuTMpyP (3), and TMpyP (3) bind to poly[d(G-C)2] or poly[d(A-T)2], a result comparable to that reported for TMpyP (4). At 20 degrees C and 0.115 M [Na+], incorporation of copper decreased the rates of dissociation from poly[d(A-T)2] by a 100-fold compared to those reported for TMpyP (4) but had little effect on the rates of dissociation from poly[d(G-C)2]. Also, movement of the H3CN+ group from the fourth to the third position of the pyridinium ring enhanced the rates of dissociation from poly[d(A-T)2] but decreased the rates of dissociation from poly[d(G-C)2]. From polyelectrolyte theory, the [Na+] dependence of the dissociation rates from poly[d(G-C)2] is consistent with intercalative binding, while that for poly[d(A-T)2] is consistent with an outside binding model. For calf thymus [CT] DNA at 20 degrees C, a greater decrease in the AT than in the GC imino 1H-nmr signal was observed upon addition of CuTMpyP (2), suggesting selective outside binding to the AT regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Abstract

The binding activities of the 170 kDa and the 180 kDa human topoisomerases II (topo IIa and topo IIβ) to linear DNA fragments with different degrees of curvature were characterized. In gel retardation experiments it was shown that both forms of the enzyme bind preferentially to a curved 287 bp fragment, forming a detectable stable complex. The affinity for straight DNA fragments of similar length is significantly lower. Both a commercially available topo IIa, isolated from placenta, and topo IIα and topo IIβ purified from nuclear extracts of the Namahva lymphoma tissue culture line gave similar results. The effects of double-stranded poly[d(A-T)], poly[d(G-C)], supercoiled plasmid DNA and linear Z-DNA on the topo II- complex with curved DNA were analyzed in competition experiments. The hierarchy of affinities of the 180 kDa topo IIβ for these DNAs has the order: linear left-handed DNA > supercoiled DNA ? curved DNA ? poly[d(A-T)] ? poly[d(G-C)]. The 170 kDa topo IIa binds with similar affinity to curved DNA and linear Z-DNA ? supercoiled DNA ? linear B- DNA The data imply that human topoisomerase II binding is more sensitive to DNA secondary structure than to DNA sequence per se. The ability of the enzyme to preferentially recognize a wide variety of sequences in unusual secondary structures suggests a mode of targeting the enzyme in vivo to regions of high negative supercoiling.  相似文献   

18.
Native DNA duplexes in fibers exist usually in one of three well-known (A, B and C) forms depending on relative humidity, type of cations and the amount of retained salt. To determine the precise influence of these factors and the effect of base composition, as well as base sequence, on DNA secondary structure, X-ray diffraction methods have been used to study all four synthetic DNA duplexes with repeated dinucleotide sequences, eight of the 12 with repeated trinucleotide sequences and seven analogues in which guanine was replaced with hypoxanthine. The results indicate that there are at least six additional allomorphs denoted by B′, C′, C″, D, E and S.The B′ form (h = 0.329 nm) observed for poly(dA) · poly(dT), poly(dI) · poly(dC) and poly[d(A-I)] · poly[d(C-T)] is a minor variant of the traditional B form (h = 0.338 nm) of native DNA. The two C-like forms C′ for poly[d(A-G-C)] · poly-[d(G-C-T)] and poly[d(G-G-T)] · poly[d(A-C-C)] and C″ for poly[d(A-G)] · poly-[d(C-T)] have, respectively, 91 and 92 symmetries which reflect repetition of trinucleotide and dinucleotide sequences, respectively. Although isocompositional with poly(dA) · poly(dT), the existence of the rather different D form (81) for poly[d(A-T)] · poly[d(A-T)] or for poly[d(A-A-T)] · poly[d(A-T-T)] is a clear demonstration of the sequence effect. The I · C pair generally mimics an A · T pair, but poly[d(I-I-T)] · poly[d(A-C-C)] provides a new (E) form with approximately 152 screw symmetry and with 〈h〉 = 0.325 nm and 〈t〉 = 48 dg per nucleotide. The S form (65) observed for poly[d(G-C)] · poly[d(G-C)] and poly[d(A-C)] · poly[d(G-T)] is an unusual left-handed polydinucleotide helix and is accessible to any alternating purine-pyrimidine sequence. In it the two nucleotides have quite different conformations and involve syn purine and anti pyrimidine nucleosides.  相似文献   

19.
When meso-tetrakis(3-N-methylpyridiniumyl)porphyrin (m-TMPyP) formed a complex with poly[d(A-T)(2)], an intense bisignate excitonic CD in the Soret absorption region was observed. The excitonic CD of the m-TMPyP-poly[d(A-T)(2)] complex is unique in that no other combination of the related porphyrin, namely, meso-tetrakis(n-N-methylpyridiniumyl)porphyrin (where n = 2, 4), and polynucleotide including calf thymus DNA, poly[d(G-C)(2)], poly[d(I-C)(2)], and poly(dA).poly(dT), exhibits a comparable CD spectrum. From the [drug]/[DNA] ratio-dependence of the intensity and the shape of the CD spectrum, this porphyrin species is assigned to an extensively aggregated form. The extensively aggregated porphyrin disperses in 1 h after mixing to form moderately stacked porphyrin at a low mixing ratio. The magnitude of linear dichroism of the extensively aggregated porphyrin was small and the sign was negative in the Soret band, which indicated that the molecular plane of porphyrin in the complex is strongly tilted. On the other hand, the molecular plane of porphyrin is almost parallel to the DNA base plane (perpendicular to the DNA helix axis) in the moderately stacked form.  相似文献   

20.
The non-covalent interaction of five novel ruthenium(II) bis-terpyridine complexes with calf thymus DNA and, where appropriate, with poly[d(G-C)](2) and poly[d(A-T)](2) is described. Each complex is functionalised with aryl tail groups in the 4' position of the terpyridine ligands ((i) 9-anthracenyl, (ii) 4,4'-biphenyl, (iii) beta-naphthyl, (iv) 9-phenanthrenyl, and (v) 1-pyrenyl). Circular dichroism and linear dichroism show that the binding of three of the complexes (phenanthrenyl, anthracenyl and pyrenyl) at low metal complex concentration is dominated by intercalation of the aryl tail groups between the DNA bases. The complex with the biphenyl tail predominantly exhibits groove binding with no significant tail intercalation. The naphthyl derivative binds both by intercalation and a non-intercalative mode even at low metal complex concentrations. At high metal complex concentrations, aggregation of the complexes on the DNA is observed. Resonance light scattering indicates that the aggregates are of low nuclearity along the groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号