首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures and molecular conformations of two tetraproline derivatives with alternating configurations Boc(D -Pro,L -Pro)2OH and Boc(D -Pro,L -Pro)2OCH3 are investigated in connection with the ability of the homologous polymer to selectively increase (as an ion channel) the ion permeability across bilayer membranes. Both tetramers are characterized by the cis-trans alternating conformation of the peptide bonds, which formally transforms in a turn of the poly-D ,L -proline channel after a cis-trans change of the central peptide residue.  相似文献   

2.
Some proline-containing tripeptides with the general formulas R0CO-L -Pro-X-NHR3 (X = Gly,Sar,L -Ala,D -Ala) and R0CO-X-L -Pro-NHR3 (X = Gly,L -Ala,D -Ala) have been investigated in solution by ir and 1H-nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII-folding mode is the most favored conformation for the L -Pro-D -Ala and L -Pro-Gly tripeptides, while the βII′-turn is largely preferred by D -Ala-L -Pro derivatives. Under the same conditions only about one-third of the whole conformers of L -Pro-L -Ala molecules adopts the βI-folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L -Pro-L -Ala sequence, on the one hand, and in the Gly-L -Pro and L -Ala-L -Pro derivatives, on the other hand. In L -Pro-Sar and X-L -Pro models, the cistrans isomerism around the middle tertiary amide function is observed. Thus cis L -Pro-Sar and L -Ala-L -Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D -Ala-L -Pro and Gly-L -Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII- and βII′-folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above-mentioned conformations, with the possible exception of the βII′-folding mode for D -Ala-L -Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline-containing tripeptides.  相似文献   

3.
Combinations of L - and D -proline residues are useful compounds for finding new structures and properties of cyclic peptides. This is demonstrated with one striking example, the cyclic tetrapeptide c(D -Pro-L -Pro-D -Pro-L -Pro). For this molecule composed of strictly alternating D - and L -configurated residues, a highly symmetrical structure is expected, which should be an optically inactive meso-form. Cyclization of the enantiomeric pure linear precursor D -Pro-L -Pro-D -Pro-L -Pro, however, yields a racemic mixture of two enantiomeric cyclotetrapeptides, both with twofold symmetry and a cistranscistrans sequence of the peptide bonds. Remarkably, this formation of a racemate was not caused by racemization, but by cis/trans isomerization of all peptide bonds in the ring. This process may occur in the linear precursor during the ring formation (cyclization of conformers with transcistrans or cistranscis arrangement of the amide bonds) as well as in the enantiomeric pure cyclic tetrapeptide at higher temperature. In the latter case, an all-cis structure should exist as the intermediate, which can form a cistranscistrans sequence in two equivalent ways, leading finally to two enantiomeric cyclotetrapeptides. In the first one, the cis peptide bonds are attributed to the L -residues and the trans peptide bonds to the D -residues; in the second one, the cis bonds belong to the D and the trans bonds to the L -residues. The mixture of these two enantiomers does not crystallize in the racemic form, but in enantiomeric pure separate crystals. The structural properties could be proved by 1H- and 13C-nmr spectroscopy and x-ray analysis. The cis/trans isomerization process was confirmed by optical rotation measurements and CD spectroscopy, as well as DREIDING model studies. Calorimetric measurements in the solid state suggest the existence of the expected all-cis intermediate. The backbone conformation of the 12-membered medium-sized ring shows only slight deviations—up to 6° —from the planarity of the peptide bonds. On the other hand, the four pyrrolidine rings show different types of puckering of the Cγ or the Cβ atoms.  相似文献   

4.
A Aubry  B Vitoux  M Marraud 《Biopolymers》1985,24(6):1089-1100
The crystal structures of ButCO-L -Pro-L -Pro-NHMe, H2O (1: monoclinic; P21; a = 6.662, b = 11.067, c = 12.205 Å; β = 96.28°) and ButCO-L -Pro-D -Pro-NHMe (2: monoclinic; P21; a = 10.770, b = 15.039, c = 11.325 Å; β = 110.00°) have been solved by x-ray diffraction. Structure 1 accommodates an open disposition with intermolecular interactions involving the water molecule, while 2 is βII-folded by an intramolecular i + 3 → i hydrogen bond. In both derivatives, small thermal parameters are indicative of fairly fixed conformations for the proline rings. Comparison between conformations of either isolated or adjacent L -Pro residues in the crystal structures of unstrained oligopeptides shows that the conformational properties of L -Pro-L -Pro sequences are probably a simple combination of those found for isolated L -Pro residues.  相似文献   

5.
Complex formation with alkali and alkaline earth metal ions of cyclic octapeptides, cyclo(Phe-Pro)4, cyclo(Leu-Pro)4, and cyclo[Lys(Z)-Pro]4 was investigated in relation to conformation. In an alcohol solution, cyclo(Phe-Pro)4 did not form complexes. However, cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 formed complexes selectively with Ba2+ and Ca2+ ions. Changing the solvent from alcohol to acetonitrile, the complexation behavior was very different. In acetonitrile, cyclo(Phe-Pro)4 was found to form a complex with Ba2+, and CD spectra of cyclo(Leu-Pro)4 and cyclo[Lys(Z)-Pro]4 changed sharply on complexation with K+. Rate constants of the complex formation between the cyclic octapeptides and metal salts were in the range of 0.7–12 L mol?1 min?1 in an alcohol solution. One of the two types of complex formation in acetonitrile was much faster than that in an alcohol solution.  相似文献   

6.
The possibility of selectively reducing the number of β-helical structures theoretically possible for a D ,L -alternating peptide by using a N-methyl group as conformational constraint is considered. Some 1H-nmr data regarding Boc(L -Nle-D -Nle)3-L -Nle-D -MeNle -L -Nle-D -Nle-L -Nle-OMe (I), its formyl analogue (II), and the pentadecapeptide Boc(D -Leu-L -Leu)5-D -MeLeu -(L -Leu-D -Leu)2-OMe (III) are presented. It is shown that these alternating stereocooligopeptides with a N-methyl group in the (n ? 3) (I and II) or (n ? 4) position (III) differ drastically in their behavior from the corresponding nonmethylated compounds. In chloroform, I and II form predominantly ↑↓ β7.2-helices and III forms almost exclusively ↑↓ β5.6 or ↑↓ β7.2-helices. The helices are in every case those having the maximum possible number of interchain H bonds.  相似文献   

7.
Derivatives of tetrapeptide sequences considered likely to form β-turns were investigated by the study of their proton magnetic resonances in methanol and in water. Differential broadening of N—H resonances by an added nitroxyl was used to indicate the presence of the sequestered N—H proton expected in β-turn conformations. Transfer of magnetic saturation from solvent water protons to N—H protons was also examined. The evidence is consistent with significant contributions by β-turn-like backbones to the conformational averages in methanol of the sequences Gly-L -Pro-D -Val-Gly, D (or L )-Val-L -Pro-Gly-Gly, and Gly-L -Pro-L -Asn-Gly, but not the sequence Gly-D -Ala-L -Val-Gly. It is suggested that a Type I turn, Likely in Gly-L -Pro-L -Asn-Gly derivatives, is characterized by sequestered N—H protons of both the third and fourth residues. For all of the peptide derivatives, save possibly Ac-L -Val-L -Pro-Gly-Gly-NHNH2, contributions from folded structures in water are not detectable by line-broadening experiments. However, the transfer of saturation experiments may be interpreted as indicating some degree of chain folding in water.  相似文献   

8.
The 13C chemical shifts and spin-lattice relaxation times are reported for cyclo(L -Pro-L -Leu) and cyclo(L -Pro-D -Leu). The chemical shifts of the D and L leucyl residues in the cyclic peptides differ from each other by 1.8 and 3.6 parts per million for the α and β carbons, respectively. The α-carbons of the prolyl residues differ by 1.0 ppm as a consequence of proximity to a D or an L leucyl residue. The 13C spin-lattic relaxation time(T1) of the prolyl residues, but not the leucyl residues, in both compounds are indicative of difference in conformational equilibria within the pyrrolidine ring in the L -L isomer as compared to the L -D isomer. Anisotropic overall molecular reorientation is not responsible for the differences observed in the T1 values. The differences in T1 values and chemical shifts between cyclo(L -Pro-L -Leu) and cyclo(L -Pro-D -Leu) appear to result from a difference in conformations of the two diketopiperazine rings.  相似文献   

9.
The 1H-nmr spectra (270 MHz) of cyclic di- and tri-L -azatidine-2-carboxylic acid [cy-clo(L -Aze)2 and cyclo(L -Aze)3] were determined in CDCl3 and D2O and computer simulated. The spectral results were compared with those obtained with cyclo (L -Pro)2 and cyclo (L, -Pro)3. In CDCl3 and D2O solution, the four membered ring of cyclo (L -Aze)2 is puckered with the α-proton in a pseudo-axial position, and the ? angle is smaller in absolute value than ?60°, as found for cyclo (L -Pro)2,. The puckering of the four-membered ring of cyclo(L, -Aze)3 in CDCl3 has the α-proton in a pseudo–equatorial position and ? angle larger in absolute value than ?60°, in agreement with cyclo(L -Pro)3. In D2O, cyclo(L -Aze)3 was found to interconvert rapidly between different conformers. In the azetidine cyclic peptides studied, the range of values found for the ? angles was smaller than in the related proline cyclic peptides, indicating greater rigidity in the four-membered ring.  相似文献   

10.
Conformations of disulfide and diselenide were compared in (Boc‐Cys/Sec‐NHMe)2 and (Boc‐Cys/Sec‐OMe)2 using X‐ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, density functional theory (DFT), and circular dichroism (CD) spectroscopy. Conformations of disulfide/diselenide in polypeptides are defined based on the sign of side chain torsion angle χ3 (–CH2–S/Se–S/Se–CH2–); negative indicates left‐handed and positive indicates right‐handed orientation. In the crystals of (Boc‐Cys‐OMe)2 and (Boc‐Sec‐OMe)2, the disulfide exhibits a left‐handed and the diselenide a right‐handed orientation. Characterization of cystine and selenocystine derivatives in solution using 1H‐NMR, natural abundant 77Se NMR, 2D‐ROESY, and chemical shift analysis coupled to DMSO titration has indicated the symmetrical nature and antiparallel orientation of Cys/Sec residues about the disulfide/diselenide bridges. Structural calculations of cystine and selenocystine derivatives using DFT further support the antiparallel orientation of Cys/Sec residues about disulfide/diselenide. The far‐ultraviolet (UV) region CD spectra of cystine and selenocystine derivatives have exhibited the negative Cotton effect (CE) for disulfide and positive for diselenide confirming the difference in the conformational preference of disulfide and diselenide. In the previously reported polymorphic structure of (Boc‐Sec‐OMe)2, the diselenide has right‐handed orientation. In the X‐ray structures of disulfide and diselenide analogues of Escherichia coli protein encoded by curli specific gene C (CgsC) retrieved from Protein Databank (PDB), disulfide has left‐handed and the diselenide right‐handed orientation. The current report provides the evidence for the local conformational difference between a disulfide and a diselenide group under unconstrained conditions, which may be useful for the rational replacement of disulfide by diselenide in polypeptide chains.  相似文献   

11.
The collagen-like peptides (L -Pro-L -Pro-Gly)n and (L -Pro-L -Hyp-Gly)n with n = 5 and 10, were examined in terms of their triple helix ? coil transitions in aqueous and nonaqueous solvents. The peptides were soluble in 1,2-propanediol containing 3% acetic acid and they were found to form triple-helical structures in this solvent system. The water content of the solvent system and the amount of water bound to the peptides were assayed by equilibrating the solvent with molecular sieves and carrying out Karl Fischer titrations on the solvent phase. After the solvent was dehydrated, much less than one molecule of water per tripeptide unit was bound to the peptides. Since the peptides remained in a triple-helical conformation, the results indicated that water was not an essential component of the triple-helical structure. Comparison of peptides with the same chain length demonstrated that the presence of hydroxyproline increased the thermal stability of the triple helix even under anhydrous conditions. The results, therefore, did not support recent hypotheses that hydroxyproline stabilizes the triple helix of collagen and collagen-like peptides by a specific interaction with water molecules. Analysis of the thermal transition curves in several solvent systems showed that although the peptides containing hydroxyproline had tm values which were 18.6° to 32.7°C higher, the effect of hydroxyproline on ΔG was only 0.1 to 0.3 kcal per tripeptide unit at 25°C. The results suggested, therefore, that the influence of hydroxyproline on helical stability may be explained by intrinsic effects such as dipole–dipole interactions or by changes in the solvation of the peptides by alcohol, acetic acid, and water. A direct calorimetric measurement of the transition enthalpy for (L -Pro-L -Pro-Gly)n in 3% or 10% acetic acid gave a value of ?1.84 kcal per tripeptide unit for the coil-to-helix transition. From the value for enthalpy and from data on the effects of different chain lengths on the thermal transition, it was calculated that the apparent free energy for nucleation was +5 kcal/mol at 25°C (apparent nucleation parameter = 2 × 10?4 M?2). The value was dependent on solvent and on chemical modification of end groups.  相似文献   

12.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

13.
Cyclic hexapeptides of the type cyclo(L -Xxx-L -Pro-D -Yyy)2 or cyclo(L -Xxx-L -Pro-Gly)2 exist in solution predominantly in two forms of C2 average symmetry, one with all-trans peptide bonds and generally well-established conformation, and another with both Xxx-Pro peptide bonds cis. We have been measuring the thermodynamic parameters of this equilibrium using carbon and proton nmr spectroscopy. Data have been obtained for peptides in which Yyy = Gly, D -Ala, or D -Phe, and Xxx = Gly, L -Ala, L -Leu, and L -Val. In a given solvent, stability of the all-trans form decreases (ΔG0 increases) as Xxx is changed through the series Gly, L -Ala-, L -Leu, and L -Val, consistent with expected increasing repulsion between the Xxx side chain and the proline δ methylene across the trnas Xxx-Pro bond. Also, for a given set of side chains, the stability of the all-trnas form increases as the polarity of the solvent decreases, consistent with models in which all C?O and N? H groups are accessible for solvation in the two-cis form, but two C?O and two N? H groups are somewhat sequestered in the all-trans form. With the available data it is not possible to identify pure intramolecular (solvent-independent) or pure peptide-bond solvation (side chain-independent) terms in ΔH° or ΔS°, although trends are discernible.  相似文献   

14.
Praziquantel (PZQ) composes a regular medicine available in a tablet form to fight schistosomiasis and just half of its mass is composed by the active principle (L‐PZQ), the other half, D‐PZQ, is frequently associated to a strong bitter taste. Moreover, optically pure L‐PZQ derivatives could be used in studies about adult and juvenile worms' resistance. Nowadays, these studies use racemic PZQ (rac‐PZQ) as starting point. The D‐PZQ, which would be discarded, could be racemized, coming back as feed concentration in the process. The present work aims to get L‐PZQ and D‐PZQ with high optical purities (more than 97%) and productivity (more than 253 g kgads?1 day?1) towards semipreparative scale for researches involving L‐PZQ, L‐PZQ derivatives, and D‐PZQ racemization. In order to achieve this goal, a built‐in‐house simulated moving bed chromatographic unit with the cellulose tris (3‐chloro‐4‐methylphenylcarbamate) (Chiralcel OZ) as chiral stationary phase (CSP) was used to investigate different scenarios of separation according to a well‐known design method called triangle theory. In all scenarios investigated, at least one of the outlet streams presented high optically purity for one of the enantiomers. Comparison with literature showed superior performance of our unit even at racemic mixture concentrations that were 10 times lower than the racemic concentrations found in literature.  相似文献   

15.
A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&S surfaces. Isotopically labelled 1-13C-l- Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination of d -Pro and 1-13C-l -Pro when adsorbed as mixtures. On the Cu(111) surface, X-ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&S surface, adsorbed Pro enantiomers decompose with non-enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&S surfaces to a racemic gas phase mixture of d -Pro and 1-13C-l -Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non-racemic mixtures of d -Pro and 1-13C-l -Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co-adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption of d -Pro and 1-13C-l -Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations of dl -Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.  相似文献   

16.
The crystal structure of N-acetyl-L -4-hydroxyproline (Hyp) was determined by direct methods. (The crystal is orthorhombic with the space group P212121.) The acetyl group is in the trans conformation and the pyrrolidine ring puckers at Cγ (CsCγ envelope), as in most Hyp residues. According to the rotation angle ψ = ?30°, the N-acetyl-L -4Hyp has the same conformation as an α-helix of prolyl residues. The crystal packing is stabilized by hydrogen bonds between three different molecules and the same molecule of water. One of the water bridges involves the carbonyl of the N-acetyl group of one molecule and the hydrogen atom of the 4-OH group of another. Such an arrangement has been proposed to explain the high stability of (Gly-L -Pro-L -4Hyp)n. A second bridge involves the two hydrogens of the water molecule and the carbonyl groups of two neighbouring molecules, as already proposed in a dihydrated model of collagen. These experimental features, which are discussed in relation to the different models of collagen, allow us to propose an hypothetical arrangement for the water molecule which is strongly retained in the triple helix of (Gly-L -Pro-L -4Hyp)n.  相似文献   

17.
The lack of the positive band at around 226 nm in the CD spectra of poly(prolyl-azetidine-2-carbonyl-proline) in trifluoroethanol and of poly(azetidine-2-carbonyl-prolyl-azetidine-2-carboxylic) acid in F3EtOH and water, the hyperchromism of the absorption maximum at about 202 nm, and the extremely small intensity of the Cβ-Pro, Cγ-Pro, and Cβ-Aze signals for the cis peptide bonds in the 13C nmr spectrum of poly(Pro-Aze-Pro) in F3EtOH indicate that both polyproline analogs exist as disordered chains in this solvent, the trans peptide group being maintained. The disordering of the chains is attributed to an increase in the accessible range of ψ due to the reduced dimensions of the square ring of L -azetidine-2-carboxylic acid residue relative to the pyrrolidine ring of proline and to strong interactions of the haloalcohol with the peptide groups of the chains.  相似文献   

18.
Four diastereomeric‐Leu‐Leu‐Aib‐Leu‐Leu‐Aib‐peptides, Boc‐D ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (1), Boc‐L ‐Leu‐D ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (2), Boc‐L ‐Leu‐L ‐Leu‐Aib‐D ‐Leu‐L ‐Leu‐Aib‐OMe (3), and Boc‐L ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐D ‐Leu‐Aib‐OMe (4), were synthesized. The crystals of the four hexapeptides were characterized by X‐ray crystallographic analysis. Two diastereomeric hexapeptides 1 and 2 having D ‐Leu(1) or D ‐Leu(2) were folded into right‐handed (P) 3 10 ‐helical structures, while peptide 3 having D ‐Leu(4) was folded into a turn structure nucleated by type III′ and I$' \bf{\beta}$ ‐turns, and peptide 4 having D ‐Leu(5) was folded into a left‐handed (M) 3 10 ‐helical structure. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The 13C nmr equilibration method lends itself as a tool for study of conformational rate processes involving aqueous media in conjunction with high activation barriers. This method is applied for measurement of kinetic and thermodynamic parameters of isomerism in the dipeptide L -Pro-L -4Hyp. The activation barrier for cis ? trans interconversion (ω 0° → 180°) is determined, ΔG = 22.3 kcal/mol. From low-temperature study, an upper limit ΔG < 9.7 kcal/mol is evaluated for cis′ ? trans′ rotation (ψ ?40° → 160°). These data are compared with computed values found in literature. The results are discussed in connection with the helix–coil transition of collagen involving Gly-L -Pro-L -4Hyp as nucleation sites.  相似文献   

20.
Incubation of SJL or DBA/1 mouse spleen cells with poly(lTyr, lGlu)-polylPro—polylLys, (T, G)-Pro—L in vitro reduced the immune response potential of the cells to this immunogen as tested by adoptive transfer into irradiated, syngeneic recipients, followed by immunization with (T, G)-Pro—L in complete Freund's adjuvant. This reduction in immunocompetence was antigen-specific, since incubation with another antigen (rabbit immunoglobulin G) did not result in a suppression of responsiveness of the cells to subsequent in vivo immunization with (T, G)-Pro—L. Incubation of the spleen cell-(T, G)-Pro—L mixture in the presence of either prostaglandin E1(PGE1) or polyadenylic-polyuridylic acid (poly(A)·poly (U)) restored the immune response potential to the normal level. Incubation of (T, G)-Pro—L with spleen cells had no effect on cyclic AMP accumulation, whereas incubation of PGE1 with the cells stimulated cyclic AMP production, irrespective of the presence of antigens. In contrast, the level of cyclic AMP was not affected by poly(A) · poly(U). The difference in cyclic AMP accumulation suggests that PGE1 and poly(A) · poly(A) modify immune responsiveness by different mechanisms. The above observations were verified both in SJL and DBA/1 mice, which are the respective genetic high and low responders to (T, G) -Pro—L. This implies that the modifications of responsiveness described are not related to the genetic control of immune response to this immunogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号