共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolysis as a measure of the free energy difference between cytochrome c and its derivatives. 下载免费PDF全文
L. Wang N. R. Kallenbach 《Protein science : a publication of the Protein Society》1998,7(11):2460-2464
Limited cleavage of oxidized and reduced horse heart cytochrome c (Cyt c) and the azide complex of Cyt c by proteinase K at room temperature yields a single cut within the central loop (36-60 in the sequence). Using an assay that allows spectroscopic evaluation of the fraction of intact protein as a function of time, together with a simple kinetic model for proteolysis, fluctuation opening of the loop can be related to the free energy of the corresponding protein. This allows us to estimate quantitatively the free energy difference between the oxidized form of Cyt c and other states using proteolysis as a probe. The results we obtain indicate that oxidized Cyt c is 2.0 kcal mol(-1) less stable than the reduced form, and 0.07 kcal mol(-1) is more stable than the Cyt c: azide complex at 25 degrees C. These values agree in magnitude with results from hydrogen exchange and unfolding studies, suggesting that the stability of a protein can be directly related to its structural dynamics. 相似文献
2.
Mark W. Hinzman Morgan E. Essex Chiwook Park 《Protein science : a publication of the Protein Society》2016,25(5):999-1009
Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native‐state partial unfolding in a cysteine‐free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H* through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H* form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H* showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H* is greatly more susceptible to proteolysis by thermolysin than wild‐type RNase H* is. The free energy for partial unfolding determined by native‐state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. 相似文献
3.
Equilibrium unfolding of a small low-potential cytochrome, cytochrome c553 from Desulfovibrio vulgaris. 下载免费PDF全文
P. Wittung-Stafshede 《Protein science : a publication of the Protein Society》1999,8(7):1523-1529
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes. 相似文献
4.
5.
Differential scanning calorimetry, viscometry, optical and CD spectroscopy were used to characterize the influence of two polyanions, poly(vinylsulfate) (PVS), and poly(4-styrene-sulfonate) (PSS) on thermal transition reversibility of ferricytochrome c at or near isoelectric pH. In these conditions, both PVS and PSS enhance the thermal transition reversibility of cytochrome c by preventing the aggregation of denatured protein molecules. Data indicate that the polyanions are in complex with cytochrome c that is stabilized by synergistic effect of Coulombic and non-Coulombic interactions. 相似文献
6.
A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562. 下载免费PDF全文
C. R. Robinson Y. Liu R. O'Brien S. G. Sligar J. M. Sturtevant 《Protein science : a publication of the Protein Society》1998,7(4):961-965
Cytochrome b562 is a four-helix-bundle protein containing a non-covalently bound b-type heme prosthetic group. In the absence of heme, cytochrome b562 remains highly structured under native conditions. Here we report thermodynamic data for the thermal denaturation of the holo- and apoproteins as determined by differential scanning calorimetry. Thermal denaturation of holocytochrome b562 is a highly reversible process, and unexpectedly does not involve dissociation of the heme prosthetic group. Thermal denaturation of the corresponding apoprotein, with the heme group chemically removed, remains a cooperative, reversible process. Apocytochrome b562 is substantially destabilized relative to the holoprotein: the t1/2 is more than ten degrees lower, and enthalpy and heat capacity changes are about one-half of the holoprotein values. However, the energetic parameters of apocytochrome b562 denaturation are within the range of observed values for small proteins. 相似文献
7.
Thermal unfolding of tetrameric melittin: comparison with the molten globule state of cytochrome c. 总被引:3,自引:3,他引:0 下载免费PDF全文
Y. Hagihara M. Oobatake Y. Goto 《Protein science : a publication of the Protein Society》1994,3(9):1418-1429
Whereas melittin at micromolar concentrations is unfolded under conditions of low salt at neutral pH, it transforms to a tetrameric alpha-helical structure under several conditions, such as high peptide concentration, high anion concentration, or alkaline pH. The anion- and pH-dependent stabilization of the tetrameric structure is similar to that of the molten globule state of several acid-denatured proteins, suggesting that tetrameric melittin might be a state similar to the molten globule state. To test this possibility, we studied the thermal unfolding of tetrameric melittin using far-UV CD and differential scanning calorimetry. The latter technique revealed a broad but distinct heat absorption peak. The heat absorption curves were consistent with the unfolding transition observed by CD and were explainable by a 2-state transition mechanism between the tetrameric alpha-helical state and the monomeric unfolded state. From the peptide or salt-concentration dependence of unfolding, the heat capacity change upon unfolding was estimated to be 5 kJ (mol of tetramer)-1 K-1 at 30 degrees C and decreased with increasing temperature. The observed change in heat capacity was much smaller than that predicted from the crystallographic structure (9.2 kJ (mol of tetramer)-1 K-1), suggesting that the hydrophobic residues of tetrameric melittin in solution are exposed in comparison with the crystallographic structure. However, the results also indicate that the structure is more ordered than that of a typical molten globule state. We consider that the conformation is intermediate between the molten globule state and the native state of globular proteins. 相似文献
8.
Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans. 下载免费PDF全文
S. R. Lynch R. A. Copeland 《Protein science : a publication of the Protein Society》1992,1(11):1428-1434
The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues. 相似文献
9.
García-Arellano H Buenrostro-Gonzalez E Vazquez-Duhalt R 《Biotechnology and bioengineering》2004,85(7):790-798
A semi-synthetic biocatalyst was prepared by a double chemical modification of cytochrome c. Free amino groups were modified with poly(ethylene glycol) while free carboxylic groups were alkylated to form methyl esters. The double chemically modified protein, PEG-Cyt-Met, oxidized synthetic porphyrins in a ternary solvent mixture composed by methylene chloride, methanol, and phosphate buffer. The highest activity was found in the ternary systems with low water content (5%). The use of relatively hydrophobic peroxides, such as tert-butyl and cumene hydroperoxides, extended the operational life of the biocatalyst, which, in turn, resulted in an extended oxidation of the substrates tested. PEG-Cyt-Met is able to transform asphaltenes, a highly recalcitrant petroleum fraction. The huge energetic resource found as asphaltene-rich deposits is the driving force to investigate and to innovate upgrading technologies, including biotechnological strategies. 相似文献
10.
This is the first crystal structure of a proteolytically generated functional C-lobe of lactoferrin. The purified samples of iron-saturated C-lobe were crystallized in 0.1 M Mes buffer (pH 6.5) containing 25% (v/v) polyethyleneglycol monomethyl ether 550 M and 0.1 M zinc sulphate heptahydrate. The X-ray intensity data were collected with 300 mm imaging plate scanner mounted on a rotating anode generator. The structure was determined by the molecular replacement method using the coordinates of the C-terminal half of bovine lactoferrin as a search model and refined to an R-factor of 0.193 for all data to 1.9A resolution. The final model comprises 2593 protein atoms (residues 342-676 and 681-685), 124 carbohydrate atoms (from ten monosaccharide units, in three glycan chains), one Fe(3+), one CO(3)(2-), two Zn(2+) and 230 water molecules. The overall folding of the C-lobe is essentially the same as that of C-terminal half of bovine lactoferrin but differs slightly in conformations of some of the loops and reveals a number of new interactions. There are 20 Cys residues in the C-lobe forming ten disulphide links. Out of these, one involving Cys481-Cys675 provides an inter-domain link at 2.01A while another Cys405-Cys684 is formed between the main C-lobe 342-676 and the hydrolyzed pentapeptide 681-685 fragment. Six inter-domain hydrogen bonds have been observed in the structure whereas only four were reported in the structure of intact lactoferrin, although domain orientations have been found similar in the two structures. The good quality of electron density has also revealed all the ten oligosaccharide units in the structure. The observation of two metal ions at sites other than the iron-binding cleft is another novel feature of the present structure. These zinc ions stabilize the crystal packing. This structure is also notable for extensive inter-molecular hydrogen bonding in the crystals. Therefore, the present structure appears to be one of the best packed crystal structures among the proteins of the transferrin superfamily. 相似文献
11.
Transient thermal unfolding of ubiquitin is investigated using nonlinear infrared spectroscopy after a nanosecond laser temperature jump (T-jump). The abrupt change in the unfolding free energy surface and the ns time resolution allow us to observe a fast response on ns to micros time-scales, which we attribute to downhill unfolding, before a cross-over to ms kinetics. The downhill unfolding by a sub-population of folded proteins is induced through a shift of the barrier toward the native state. By adjusting the T-jump width, the effect of the initial (T(i)) and final (T(f)) temperature on the unfolding dynamics can be separated. From the amplitude of the fast downhill unfolding, the fractional population prepared at the unfolding transition state is obtained. This population increases with both T(i) and with T(f). A two-state kinetic analysis of the ms refolding provides thermodynamic information about the barrier height. By a combination of the fast and slow unfolding and folding parameters, a quasi-two-state kinetic analysis is performed to calculate the time-dependent population changes of the folded state. This calculation coincides with the experimentally obtained population changes at low temperature but deviations are found in the T-jump from 67 to 78 degrees C. Using temperature-dependent barrier height changes, a temperature Phi value analysis is performed. The result shows a decreasing trend of Phi(T) with temperature, which indicates an increase of the heterogeneity of the transition state. We conclude that ubiquitin unfolds along a well-defined pathway at low temperature which expands with increasing temperature to include multiple routes. 相似文献
12.
Constitutive presence of cytochrome c in the cytosol of a chemoresistant leukemic cell line 总被引:2,自引:0,他引:2
Oliver L LeCabellec MT Pradal G Meflah K Kroemer G Vallette FM 《Apoptosis : an international journal on programmed cell death》2005,10(2):277-287
The release of holocytochrome c (cyt c) from mitochondria into the cytosol is reportedly a landmark of the execution phase of apoptosis. As shown here, the P-glycoprotein- (P-gp) expressing K562/ADR cell line (but not the parental K562 cell line) exhibits both cytosolic and mitochondrial cyt c in the absence of any signs of apoptosis. K562/ADR cells were found to be relatively resistant to a variety of different inducers of apoptosis, and blocking the P-gp did not reverse this resistance. The release of cyt c in non-apoptotic K562/ADR cells was not accompanied by that of any other mitochondrial apoptogenic protein, such as AIF or Smac/DIABLO, and was inhibited by Bcl-2 over expression. In addition, using a cell-free system, we show that mitochondria isolated from K562/ADR cells spontaneously released cyt c. These data suggest that cyt c release may be compatible with the preservation of mitochondrial integrity and function, as well as cell proliferation. 相似文献
13.
Honglin Liu Shengnan He Ye Tao Hao Zhuang Shiqiang Wei 《Biochemical and biophysical research communications》2010,397(3):598-178
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg2+-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the β-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich α-helix and less β-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric β-sheet enriched intermediate. 相似文献
14.
Thermal unfolding of cytochrome c (cyt c) from several states has been studied using equilibrium spectroscopic techniques. CD in the uv, vibrational circular dichroism, infrared, and uv-vis absorption spectra measured at various temperatures, pHs, salt concentrations, and GuHCl concentrations are used to show the conformational as well as heme structural differences between native and various denatured states. The difference in thermal denaturation behaviors of cyt c starting from acid denatured, molten globule (MG), and the A and native states are explored. Different final high temperature states were observed for cytochrome c unfolding from four different initial states (native, MG, A, and acid denatured state) by electronic CD, Fourier transform infrared (FTIR), and vibrational CD (VCD). Consistent with this, different thermal unfolding pathways for the MG and A states are suggested by the FTIR and VCD data for this process. 相似文献
15.
To provide evidence for the interpretation of temperature‐dependent unfolding kinetics and the downhill unfolding scenario presented in the accompanying experimental article (Part I), the free energy surface of ubiquitin unfolding is calculated using statistical mechanical models of the Muñoz‐Eaton (ME) form. The models allow only two states for each amino acid residue, folded or unfolded, and permutations of these states generate an ensemble of microstates. One‐dimensional free energy curves are calculated using the number of folded residues as a reaction coordinate. The proposed sequential unfolding of ubiquitin's β‐sheet is tested by mapping the free energy onto two reaction coordinates inspired by the experiment as follows: the number of folded residues in ubiquitin's stable β‐strands I and II and those of the less stable strands III–V. Although the original ME model successfully captures folding features of zipper‐like one‐dimensional folders, it misses important tertiary interactions between residues that are far from each other in primary sequence. To take tertiary contacts into account, partially folded microstates based on a spherical growth model are included in the calculation and compared with the original model. By calculating the folding probability of each residue for a given point on the free energy surface, the unfolding pathway of ubiquitin is visualized. At low temperature, thermal unfolding occurs along a sequential unfolding pathway as follows: disruption of the β‐strands III–V followed by unfolding of the strands I and II. At high temperature, multiple unfolding routes are formed. The heterogeneity of the transition state explains the global nonexponential unfolding observed in the T‐jump experiment at high temperature. The calculation also reports a high stability for the α‐helix of ubiquitin. Proteins 2008. © 2008 Wiley‐Liss, Inc. 相似文献
16.
Chen Chen Jung‐Hun Yun Jae‐Hoon Kim Chiwook Park 《Protein science : a publication of the Protein Society》2016,25(8):1483-1491
Under native conditions, proteins can undergo transient partial unfolding, which may cause proteins to misfold or aggregate. A change in sequence connectivity by circular permutation may affect the energetics of transient partial unfolding in proteins without altering the three‐dimensional structures. Using Escherichia coli dihydrofolate reductase (DHFR) as a model system, we investigated how circular permutation affects transient partial unfolding in proteins. We constructed three circular permutants, CP18, CP37, and CP87, with the new N‐termini at residue 18, 37, and 87, respectively, and probed transient partial unfolding by native‐state proteolysis. The new termini in CP18, CP37, and CP87 are within, near, and distal to the Met20 loop, which is known to be dynamic and also part of the region that undergoes transient unfolding in wild‐type DHFR. The stabilities of both native and partially unfolded forms of CP18 are similar to those of wild‐type DHFR, suggesting that the influence of introducing new termini in a dynamic region to the protein is minimal. CP37 has a significantly more accessible partially unfolded form than wild‐type DHFR, demonstrating that introducing new termini near a dynamic region may promote transient partial unfolding. CP87 has significantly destabilized native and partially unfolded forms, confirming that modification of the folded region in a partially unfolded form destabilizes the partially unfolded form similar to the native form. Our findings provide valuable guidelines to control transient partial unfolding in designing circular permutants in proteins. 相似文献
17.
Complex structure of cytochrome c–cytochrome c oxidase reveals a novel protein–protein interaction mode 下载免费PDF全文
Satoru Shimada Kyoko Shinzawa‐Itoh Junpei Baba Shimpei Aoe Atsuhiro Shimada Eiki Yamashita Jiyoung Kang Masaru Tateno Shinya Yoshikawa Tomitake Tsukihara 《The EMBO journal》2017,36(3):291-300
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction. 相似文献
18.
The development of differential scanning calorimetry has resulted in an increased interest in studies of the unfolding process in proteins with the aim of identifying domains and interactions with ligands or other proteins. Several of these studies were done with actin and showed that the thermal unfolding of F-actin occurs in at least three steps; this was interpreted as the denaturation of independent domains. In the present work, we have followed the thermal unfolding of F-actin using differential scanning calorimetry (DSC), CD spectroscopy, and probe fluorescence. We found that the three steps revealed through DSC are not the denaturation of independent domains. These three steps are a change in the environment of cys 374 at 49.5 degrees C; a modification at the nucleotide-binding site at 55 degrees C; and the unfolding of the peptide chain at 64 degrees C. Previous interpretations of the thermograms of F-actin were thus erroneous. Since DSC is now widely used to study proteins, our experimental approach and conclusions may also be relevant in denaturation studies of proteins in general. 相似文献
19.
D. Ellison J. Hinton S. J. Hubbard R. J. Beynon 《Protein science : a publication of the Protein Society》1995,4(7):1337-1345
Avidin is a tetramer of 16-kDa subunits that have a high affinity for biotin. Proteolysis of native apoavidin by proteinase K results in a limited attack at the loop between beta-strands 3 and 4, involving amino acids 38-43. Specifically, sites of proteolysis are at Thr 40-Ser 41 and Asn 42-Glu 43. The limited proteolysis results in an avidin product that remains otherwise intact and which has enhanced binding for 4'-hydroxyazobenzene-2-benzoic acid (HABA), a chromogenic reporter that can occupy the biotin-binding site. Saturation of the biotin-binding site with the natural ligand protects avidin from proteolysis, but saturation with HABA enhances the rate of proteolysis of the same site. Analysis of the three-dimensional structures of apoavidin and holoavidin reveals that the 3-4 loop is accessible to solvent and scores highly in an algorithm developed to identify sites of proteolytic attack. The structure of holoavidin is almost identical to the apoprotein. In particular, the 3-4 loop has the same structure in the apo and holo forms, yet there are marked differences in proteolytic susceptibility of this region. Evidence suggests that the 3-4 loop is rather mobile and flexible in the apoprotein, and that it becomes constrained upon ligand binding. In one crystal structure of the apoprotein, this loop appears constrained by contacts with symmetry-related molecules. Structural analyses suggest that the "lid" to the biotin-binding site, formed by the 3-4 loop, is displaced and made more accessible by HABA binding, thereby enhancing its proteolytic susceptibility. 相似文献
20.
Satoshi Maruyama Shuichi Akazaki Katsutoshi Nitta Shintaro Sugai 《International journal of biological macromolecules》1983,5(1):26-32
Equilibrium and kinetics of thermal melting of yeast 5.8S ribosomal RNA in aqueous NaCl were investigated by differential thermal melting and temperature jump methods. Two peaks were observed in each of the melting curves at 1 mM-1 M Na+ and linearity between each melting temperature Tm and log[Na+] was found at [Na+> 10 mM. From the difference spectrum ratio, , the G-C content in the local structures was calculated to be 91 and 56%. The temperature jump to 70–85°C in aqueous 30 mM Na+ of the RNA solution induced first-order kinetics, from which the kinetically determined melting curve was calculated. The curve could be approximately described in a Gaussian form with a Tm which agrees well with the high Tm in the static melting curve at 30 mM Na+. The kinetic properties of the reaction indicated a double helix-coil transition. However, the temperature jump to 20–60°C did not induce monophasic kinetics. The kinetic amplitude of the slow component showed a Tm which corresponded to the low Tm in the static melting curve at 30 mM Na+. The slow relaxation had the characteristics of a double helix-to-coil transition. However, contributions from very fast processes including single strand unstacking, were most noticeable in the low temperature melting region of the static curve. The thermodynamic parameters of both transitions from double helix to coil were analysed in detail. Both activation energies for helix formation were negative, and the nucleation is thought to follow a process similar to that in oligonucleotides. Values of Tm and enthalpy change of both helix-coil transitions indicated the cloverleaf model as the most plausible one for some limited regions of yeast 5.8S RNA among the previously proposed models: burp gun, cloverleaf and Rubin's models. 相似文献