首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
X-ray studies of phosphoglycerate kinase (EC 2.7.2.3, PGK) have shown that the enzyme's single polypeptide chain is organized into two separate domains that correspond to the N- and C-terminal halves of the chain. Substrate binding studies and the incorporation of the complete amino acid sequence of horse-muscle PGK into its X-ray model suggest that the C-domain is an ADP/ATP binding unit and that the N-terminal domain contains the phosphoglycerate binding site and the active site located in a prominent cluster of positively charged residues. Because the distance between these two sites is 12-15 A, a hinge-bending of 10 degrees--20 degrees has been proposed to bring the two sites together for catalysis. Independent solution studies of yeast PGK have shown that the radius of gyration decreases significantly on the formation of the ternary complex. This change has been interpreted in terms of a 9 degrees--12 degrees rotation about a hinge in the interdomain region that brings the two domains together. We suggest here a structural basis for the proposed hinge-bending that involves the rotation of the two helices that form the domain interface about their contact normal carrying their respective domains with them.  相似文献   

3.
Phosphoglycerate kinase (PGK) catalyzes a reversible phospho-transfer reaction between ATP and 3-phosphoglycerate (3-PG) that is thought to require a hinge-bending motion in the protein that brings two separate substrate-binding domains together. We have used difference infrared spectroscopy to better understand the conformational changes that are unique to the PGK-ATP-3-PG complex. Caged nucleotides (caged-ADP and caged-ATP) were used to initiate nucleotide binding to PGK or PGK-3-PG complexes. The difference spectra include those of PGK-ATP minus PGK, PGK-3-PG-ATP minus PGK-3-PG, PGK-3-PG-ADP minus PGK-3-PG, and PGK-ADP minus PGK. The resulting spectra were compared in attempts to identify bands associated with each PGK complex. In addition, complementary activity assays were performed in the presence of caged-nucleotides. While PGK activity decreased in the presence of caged-ADP, the activity was not influenced by the addition of caged-ATP. The activity assay results suggest that the caged-ADP may interact with PGK substrate binding site(s) and inhibit phospho-transfer. Therefore, additional difference infrared nucleotide exchange experiments were used to isolate the differences between ADP and ATP binding to PGK. Difference FTIR spectra obtained on PGK-nucleotide-3-PG complexes show distinct bands that may result from amino acid side chains as well as structural changes in the hinge region and/or increased interactions such as salt bridges forming between the two domains. The infrared data obtained on the active ternary complexes show evidence of changes in alpha-helix and beta-structures as well as signals consistent with Arg, Asn, His, Lys, Asp, Glu, and additional side chains that are uniquely perturbed in the active ternary complex as compared to other PGK complexes.  相似文献   

4.
Hinge motions are important for molecular recognition, and knowledge of their location can guide the sampling of protein conformations for docking. Predicting domains and intervening hinges is also important for identifying structurally self‐determinate units and anticipating the influence of mutations on protein flexibility and stability. Here we present StoneHinge, a novel approach for predicting hinges between domains using input from two complementary analyses of noncovalent bond networks: StoneHingeP, which identifies domain‐hinge‐domain signatures in ProFlex constraint counting results, and StoneHingeD, which does the same for DomDecomp Gaussian network analyses. Predictions for the two methods are compared to hinges defined in the literature and by visual inspection of interpolated motions between conformations in a series of proteins. For StoneHingeP, all the predicted hinges agree with hinge sites reported in the literature or observed visually, although some predictions include extra residues. Furthermore, no hinges are predicted in six hinge‐free proteins. On the other hand, StoneHingeD tends to overpredict the number of hinges, while accurately pinpointing hinge locations. By determining the consensus of their results, StoneHinge improves the specificity, predicting 11 of 13 hinges found both visually and in the literature for nine different open protein structures, and making no false‐positive predictions. By comparison, a popular hinge detection method that requires knowledge of both the open and closed conformations finds 10 of the 13 known hinges, while predicting four additional, false hinges.  相似文献   

5.
The structural maintenance of chromosomes (SMC) family proteins are commonly found in the multiprotein complexes involved in chromosome organization, including chromosome condensation and sister chromatid cohesion. These proteins are characterized by forming a V‐shaped homo‐ or heterodimeric structure with two long coiled‐coil arms having two ATPase head domains at the distal ends. The hinge domain, located in the middle of the coiled coil, forms the dimer interface. In addition to being the dimerization module, SMC hinges appear to play other roles, including the gateway function for DNA entry into the cohesin complex. Herein, we report the homodimeric structure of the hinge domain of Escherichia coli MukB, which forms a prokaryotic condensin complex with two non‐SMC subunits, MukE and MukF. In contrast with SMC hinge of Thermotoga maritima which has a sizable central hole at the dimer interface, MukB hinge forms a constricted dimer interface lacking a hole. Under our assay conditions, MukB hinge does not interact with DNA in accordance with the absence of a notable positively charged surface patch. The function of MukB hinge appears to be limited to dimerization of two copies of MukB molecules. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The hinge-bending mechanism proposed as part of the catalytic mechanism for phosphoglycerate kinase (PGK) has been investigated using yeast PGK and the site-directed mutant [H388Q]PGK, where His388 is replaced by Gln. The emission and quenching of fluorescence, supported by the aromatic CD band, show that the mutation in the waist region affects the tryptophan environment in the C-terminal domain. The mutant is also less stable to guanidine denaturation and less cooperative in its unfolding. The effect of substrates on the conformation of PGK was studied using 8-anilino-1-naphthalenesulphonic acid (ANS), a competitive inhibitor of ATP binding to the C-terminal domain, and 8-(2-[(iodoacetyl)ethyl]amino)naphthalene (I-AEDANS), attached to Cys197 on the N-terminal domain. Under the influence of substrates the novel anisotropy decay curves for ANS indicate a 1-5 degrees change in the orientation of the probe, interpreted as a small reorientation of the domains about the waist region. The experimental data are interpreted as a small swivelling of the domains about the waist region under the influence of substrate. The results with AEDANS anisotropy decay are consistent with those for ANS. The enzyme activity of PGK shows a break in the Arrhenius plot at 20 degrees C mirrored by a break in the temperature dependence of tryptophan ellipticity. This is interpreted as a change in protein dynamics associated with destabilisation of the waist region. This destabilisation is shown to have already taken place in the mutant enzyme and in the wild type at pH 5.6, both of which exhibit linear Arrhenius plots. NMR titration curves show that the pH effect must be due to a group other than histidine. The results give further support to the permissive model of hinge bending previously proposed by one of the authors, in which binding of substrate destabilises the waist region. This loosens the hinge which can then swing slightly to bring the domains closer together to make favourable interactions between the domains and the substrates, with the exclusion of water.  相似文献   

7.
We have developed a family of cloning vectors that direct expression of fusion proteins that mimic aggregated immunoglobulin (IgG) (AIG) and immune complex function with respect to their interactions with FcγR and that allow for the inclusion and targeting of a second protein domain to cells expressing FcγR. This was accomplished by expressing multiple linear copies of the hinge and CH2 domains (HCH2) of human IgG1 fused to the framework region of human IgG1 . Convenient restriction sites allow for the facile introduction of additional amino-terminal domains. The resulting molecule is tripartite. The carboxyl-IgG1 framework domain provides stability and permits dimerization, and the intervening polymer provides increased effector function and targeting to FcγR while the amino-terminal domain can deliver an additional signal to cells expressing FcγR. To demonstrate the utility of the vectors, the extracellular domain of human CD8α was expressed as a HCH2 polymer fusion protein. The fusion proteins were secreted in useful amounts from polyclonal cell lines established in Sf9 cells following transfection and selection with G418. The biological activity of the recombinant CD8α-HCH2 polymers was determined and compared to those of AIG and an anti-CD16 monoclonal antibody using an in vitro assay. The activity of the fusion proteins positively correlates to the number of HCH2 units. The largest polymer tested was severalfold more potent than AIG at similar concentrations. The HCH2 polymers described here represent a new strategy in the design of recombinant proteins for the therapeutic targeting of FcγR in autoimmune disorders.  相似文献   

8.
Structural maintenance of chromosomes (SMC) proteins function in chromosome condensation and several other aspects of DNA processing. They are large proteins characterized by an NH2-terminal nucleotide triphosphate (NTP)-binding domain, two long segments of coiled coil separated by a hinge, and a COOH-terminal domain. Here, we have visualized by EM the SMC protein from Bacillus subtilis (BsSMC) and MukB from Escherichia coli, which we argue is a divergent SMC protein. Both BsSMC and MukB show two thin rods with globular domains at the ends emerging from the hinge. The hinge appears to be quite flexible: the arms can open up to 180°, separating the terminal domains by 100 nm, or close to near 0°, bringing the terminal globular domains together.A surprising observation is that the ∼300–amino acid–long coiled coils are in an antiparallel arrangement. Known coiled coils are almost all parallel, and the longest antiparallel coiled coils known previously are 35–45 amino acids long. This antiparallel arrangement produces a symmetrical molecule with both an NH2- and a COOH-terminal domain at each end. The SMC molecule therefore has two complete and identical functional domains at the ends of the long arms. The bifunctional symmetry and a possible scissoring action at the hinge should provide unique biomechanical properties to the SMC proteins.  相似文献   

9.
The two-hybrid system was used to identify proteins that interact with the central conserved domain of Saccharomyces cerevisiae DNA topoisomerase I. Several different C-terminal domain-containing fragments of topoisomerase I, none of which overlapped with the central domain, were identified as specific interacting polypeptides. Coexpression of these two domains in yeast partially complemented the growth defects of top1-top2 ts and top1-hpr1 mutants. Moreover, an in vitro assay showed that some topoisomerase I enzymatic activity was restored to these mutants. The results demonstrate that the central domain of topoisomerase I interacts with the C-terminal domain of the protein and that these two domains reconstitute enzymatic activity in vivo, even when expressed as separate polypeptides. Received: 19 January 1998; in revised form: 3 March 1998 / Accepted: 7 April 1998  相似文献   

10.
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT‐encoded glycinamide ribonucleotide formyltransferase (PurT) and purK‐encoded N5‐carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP‐grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain‐swapped hybrids were unable to catalyze full wild‐type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain‐swapped hybrid proteins was able to restore near wild‐type PurK activity. Therefore, in this model system, domain‐swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed.  相似文献   

11.
Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N‐terminal Fic domain and a C‐terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS‐mediated translocation into host cells. A proteolysis resistant fragment (residues 10–302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α‐[32P]‐ATP. Its crystal structure, determined to 2.9‐Å resolution by the SeMet‐SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β‐rich domain at the C‐terminus. On crystal soaking with ATP/Mg2+, additional electron density indicated the presence of a PPi/Mg2+ moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg2+ and target tyrosine. The model is consistent with an in‐line nucleophilic attack of the deprotonated side‐chain hydroxyl group onto the α‐phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence‐independent mechanism of target positioning through antiparallel β‐strand interactions between enzyme and target is suggested.  相似文献   

12.
The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N‐ and C‐ terminal regions pack against one another to form a globular ATPase domain. This “head” domain is connected to a central, globular, “hinge” or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50‐nm coiled‐coil domain of MukB, the divergent SMC protein found in γ‐proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled‐coil domain. We find that, in contrast to the relatively complicated coiled‐coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled‐coil interruptions. Near the middle of the domain is a break in coiled‐coil structure in which there are three more residues on the C‐terminal strand than on the N‐terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled‐coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled‐coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. Proteins 2015; 83:1027–1045. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Kovári Z  Vas M 《Proteins》2004,55(1):198-209
In several crystal structures of 3-phosphoglycerate kinase (PGK), the two domains occupy different relative positions. It is intriguing that the two extreme (open and closed) conformations have never been observed for the enzyme from the same species. Furthermore, in certain cases, these different crystalline conformations represent the enzyme-ligand complex of the same composition, such as the ternary complex containing either the substrate 3-phosphoglycerate (3-PG) and beta,gamma-imido-adenosine-5'-triphosphate (AMP-PNP), an analogue of the substrate MgATP, or 3-PG and the product MgADP. Thus, the protein conformation in the crystal is apparently determined by the origin of the isolated enzyme: PGK from pig muscle has only been crystallized in open conformation, whereas PGK from either Thermotoga maritima or Trypanosoma brucei has only been reported in closed conformations. A systematic analysis of the underlying sequence differences at the crucial hinge regions of the molecule and in the protein-protein contact surfaces in the crystal, in two independent pairs of open and closed states, have revealed that 1) sequential differences around the molecular hinges do not explain the appearance of fundamentally different conformations and 2) the species-specific intermolecular contacts between the nonconserved residues are responsible for stabilizing one conformation over the other in the crystalline state. A direct relationship between the steric position of the contacts in the three-dimensional structure and the conformational state of the protein has been demonstrated.  相似文献   

14.
Griese JJ  Hopfner KP 《Proteins》2011,79(2):558-568
Structural Maintenance of Chromosomes (SMC) proteins are essential for a wide range of processes including chromosome structure and dynamics, gene regulation, and DNA repair. While bacteria and archaea have one SMC protein that forms a homodimer, eukaryotes possess three distinct SMC complexes, consisting of heterodimeric pairs of six different SMC proteins. SMC holocomplexes additionally contain several specific regulatory subunits. The bacterial SMC complex is required for chromosome condensation and segregation. In eukaryotes, this function is carried out by the condensin (SMC2-SMC4) complex. SMC proteins consist of N-terminal and C-terminal domains that fold back onto each other to create an ATPase "head" domain, connected to a central "hinge" domain via a long coiled-coil region. The hinge domain mediates dimerization of SMC proteins and binds DNA. This activity implicates a direct involvement of the hinge domain in the action of SMC proteins on DNA. We studied the SMC hinge domain from the thermophilic archaeon Pyrococcus furiosus. Its crystal structure shows that the SMC hinge domain fold is largely conserved between archaea and bacteria as well as eukarya. Like the eukaryotic condensin hinge domain, the P. furiosus SMC hinge domain preferentially binds single-stranded DNA (ssDNA), but its affinity for DNA is weaker than that of its eukaryotic counterpart, and point mutations reveal that its DNA-binding surface is more confined. The ssDNA-binding activity of its hinge domain might play a role in the DNA-loading process of the prokaryotic SMC complex during replication.  相似文献   

15.
A hinge-bending domain movement has been postulated as an important part of the catalytic mechanism of phosphoglycerate kinase (PGK) (Bankset al., 1979). In order to test the role of the flexibility of a putative interdomain hinge in the substrate- and sulfate-induced conformational transitions, alanine-183 was replaced by proline using site-directed mutagenesis. The maximal velocity of the Ala 183Pro mutant, measured at saturating concentrations of ATP and phosphoglycerate (5 mM and 10 mM, respectively) and in the absence of sulfate ions, is increased approximately 21% in comparison to the wild type PGK. TheK m values for both substrates are essentially unchanged. The effect of sulfate on the specific activity of the Ala 183Pro mutant and the wild type PGK was measured in the presence of 1 mM ATP and 2 mM 3-phosphoglycerate (3-PG). A maximum activation of 70% was observed at 20 mM sulfate for the mutant enzyme, as compared to 130% activation at 30 mM sulfate for the wild type PGK. These results demonstrate that the increased rigidity of the putative hinge, introduced by the AlaPro mutation, does not impair catalytic efficiency of phosphoglycerate kinase, while it appears to decrease the sulfate-dependent activation. The differential scanning calorimetry (DSC) studies demonstrate an increased susceptibility of the Ala 183 Pro mutant to thermal denaturation. In contrast to one asymmetric transition observed in the DSC scan for the wild type PGK, withT m near 54°C, two transitions are evident for the mutant enzyme withT m values of about 45 and 54°C. Using a thermodynamic model for two interacting domains, a decrease in the free energy of domain-domain interactions of about 2 kcal was estimated from the DSC data.  相似文献   

16.
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosomal segregation and condensation in γ-proteobacteria. MukB and canonical SMC proteins share a characteristic five-domain structure. Globular N- and C-terminal domains interact to form an ATP-binding cassette-like ATPase or “head” domain, which is connected to a smaller dimerization or “hinge” domain by a long, antiparallel coiled coil. In addition to mediating dimerization, this hinge region has been implicated in both conformational flexibility and dynamic protein-DNA interactions. We report here the first crystallographic model of the MukB hinge domain. This model also contains approximately 20% of the coiled-coil domain, including an unusual coiled-coil deviation. These results will facilitate studies to clarify the roles of both the hinge and the coiled-coil domains in MukB function.  相似文献   

17.
The kinase interaction (KI) domain of kinase-associated protein phosphatase (KAPP) interacts with the phosphorylated form of an Arabidopsis thaliana receptor-like protein kinase (RLK). The KI domain may recruit KAPP into an RLK-initiated signaling complex. To examine additional roles that this domain may play in plant signal transduction, a search was conducted for other KI domain-containing proteins. One gene was isolated which encodes a KI domain, the maize homolog of KAPP. To test whether the maize KI domain associates with other maize proteins, it was used as a probe in a protein–protein interaction cloning strategy. A new maize RLK, K I domain i nteracting k inase 1 (KIK1), was identified by its interaction with the maize KI domain. The maize KI domain and the KIK1 kinase domain association required phosphorylation of the kinase. This work establishes that the KI domain phosphorylation-dependent signaling mechanism is present in both monocots and dicots. Additionally, it was determined that both the maize and Arabidopsis KI domains interact with several but not all of the active RLKs assayed. These multiple associations imply that KAPP may function in a number of RLK-initiated signaling pathways.  相似文献   

18.
3-Phosphoglycerate kinase (PGK) catalyzes the reversible conversion of 3-phosphoglycerate (3-PG) and ATP to 1,3-diphosphoglycerate (1,3-diPG) and ADP in the presence of magnesium ions. PGK is a single polypeptide chain arranged in two domains, with an active site located in the interdomain cleft. The large distance between the binding sites for 3-PG and ATP, deduced from the crystallographic structures of the binary complexes, gave rise to the hypothesis that this enzyme undergoes a hinge-bending domain motion from open to closed conformation during catalysis. However, no direct experimental evidence exists for the "closed" conformation in the presence of both substrates. In this study, several PGK mutants with single tryptophans placed in various location were used as intrinsic fluorescent probes to examine the extent and delocalization of conformational changes induced by the binding of 3-PG, 1,3-diPG, ADP, ATP, and PNP-AMP (nonhydrolyzable analogue of ATP), and by 3-PG and PNP-AMP together. The results showed that only the probes situated in the hinge and in parts of each domain close to the hinge reflect substrate-induced conformational changes. Binding of substrates to one domain was found to induce spectral perturbation of the probes in the opposite domain, indicating a transmission of conformational changes between the domains. A combination of both substrates generated much larger fluorescence changes than the individual substrates. The binding constants were determined for each substrate using probes situated in different locations.  相似文献   

19.
 The Tapasin molecule plays a role in the assembly of major histocompatibility complex (Mhc) class I molecules in the endoplasmic reticulum, by mediating the interaction of class I-β2-microglobulin dimers with TAP. We report here the identification of the Tapasin gene in the chicken Mhc (B complex). This gene is located at the centromeric end of the complex, between the class II B-LBI and B-LBII genes. Like its human counterpart it comprises 8 exons, but features a significantly reduced intron size as compared to the human gene. Chicken Tapasin codes for a transmembrane protein with a probable endoplasmic reticulum retention signal. Exons IV and V, and possibly exon III, code for separate domains that are related to the immunoglobulin (Ig) superfamily (this relationship was so far unrecognized for human Tapasin domain IV which has lost its two cysteines). Two different cDNAs corresponding to the Tapasin gene were isolated, possibly related to alternative splicing events; the Ig-like domain encoded by exon IV is missing in one of the cDNAs, suggesting either that this domain is not necessary for the protein to perform its function, or that the two alternatively spliced cDNAs are translated into two functionally different forms of the protein. Received: 8 July 1998 / Revised: 5 October 1998  相似文献   

20.
Co-evolution of proteins with their interaction partners   总被引:28,自引:0,他引:28  
The divergent evolution of proteins in cellular signaling pathways requires ligands and their receptors to co-evolve, creating new pathways when a new receptor is activated by a new ligand. However, information about the evolution of binding specificity in ligand-receptor systems is difficult to glean from sequences alone. We have used phosphoglycerate kinase (PGK), an enzyme that forms its active site between its two domains, to develop a standard for measuring the co-evolution of interacting proteins. The N-terminal and C-terminal domains of PGK form the active site at their interface and are covalently linked. Therefore, they must have co-evolved to preserve enzyme function. By building two phylogenetic trees from multiple sequence alignments of each of the two domains of PGK, we have calculated a correlation coefficient for the two trees that quantifies the co-evolution of the two domains. The correlation coefficient for the trees of the two domains of PGK is 0. 79, which establishes an upper bound for the co-evolution of a protein domain with its binding partner. The analysis is extended to ligands and their receptors, using the chemokines as a model. We show that the correlation between the chemokine ligand and receptor trees' distances is 0.57. The chemokine family of protein ligands and their G-protein coupled receptors have co-evolved so that each subgroup of chemokine ligands has a matching subgroup of chemokine receptors. The matching subfamilies of ligands and their receptors create a framework within which the ligands of orphan chemokine receptors can be more easily determined. This approach can be applied to a variety of ligand and receptor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号