首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
花生(Arachis hypogaea L.)汕油71果针入土20d(20 DAP)的种子剥去种皮后,10%的胚可以萌发,至40 DAP发芽率达98%。不同发育时期的花生胚萌发 10d后子叶盐溶蛋白质和花生球蛋白降解表明,20和32 DAP胚萌发后,子叶中这些蛋白质只有部分降解。随着胚成熟度增加,子叶中降解这些蛋白质的能力不断提高。20~40 DAP胚萌发4d时,子叶的BAPAase和GHE活性较低。50~80DAP胚萌发 4d,子叶中上述两种酶均显示较高的活性。  相似文献   

2.
种子的萌发需要一定的内在条件和环境条件。根据北师大版生物学教材7年级上册内容,种子萌发的内在条件之一是具有完整的胚。对双子叶植物花生种子缺少部分子叶的不完整胚进行了萌发探究,结果表明花生种子缺少部分子叶的不完整胚仍可以萌发。  相似文献   

3.
梣叶槭种子中抑制物质研究简报   总被引:1,自引:0,他引:1  
休眠、层积和萌发的梣叶槭种子中抑制物质的含量不同。休眠的种子中抑制物质的含量最多,层积后的种子抑制物质活性明显减弱,萌发的种子中依然存有少量的抑制物质。抑制物质在种子内的分布也不同。子叶内较多,胚中较少。种子萌发时,胚内的抑制物质可能向子叶转移。  相似文献   

4.
花生(Arachis hypogaea L.)种子发育过程中,胚轴内源ABA 含量一直是增加的;种皮内源ABA含量在果针入土后40 d 最大,然后急剧下降;子叶内源ABA 含量在果针入土后60 d 出现高峰,然后有轻微下降。种子活力指数和萌发时内源ABA 的净下降量有密切关系。甘露醇可促进离体胚内源ABA 合成,1-甲基-3-苯基-5(3-[三氟甲基]-苯基-4-(1氢)-吡啶)抑制子叶内源ABA 的合成,子叶和胚轴存在不同的ABA 合成途径。种子早熟和早萌处理时,内源ABA 含量都下降,胚轴在种子由发育向萌发转换中起着十分重要的作用  相似文献   

5.
以去除果皮后阴干的珍稀濒危植物蒜头果种子为材料,在温室大棚沙池内进行层积处理,从层积处理开始至子叶出土的不同萌发阶段,考察蒜头果种子发育形态、贮藏物质积累、酶活性以及幼苗类型等变化特征,初步探讨其种子休眠形成原因。结果显示:(1)蒜头果种子从解除休眠开始至萌发形成幼苗的过程约需195 d,其中幼胚的形态发育后熟约需75 d,随后30 d内是种子集中萌发的时期,其发芽率达到最高(53.33%);依据种胚发育形态的标志特征将此过程划分为7个阶段(S1~S7阶段):S1阶段种子未萌发,S2阶段种胚“露白”,S3阶段胚根突破种皮长超过1 cm, S4阶段下胚轴与胚根连接处形成弯钩结构,S5阶段“S”型胚形成及胚根前端膨大,S6阶段种子不仅具有膨大的胚根且已有侧根的分化,S7阶段子叶脱落,胚芽出土,真叶出现。(2)蒜头果种子在湿沙层积过程中,种胚胚长和胚率从S1阶段的(5.49±1.57)mm和(19.48±5.72)%分别增加至S6阶段的(67.92±2.94)mm和(240.75±15.29)%,胚率平均增加了12.4倍,显示蒜头果种子的胚需要经历后熟过程才能萌发,属于胚后熟型种子。(3)从...  相似文献   

6.
黄精种子萌发过程发育解剖学研究   总被引:2,自引:0,他引:2  
采用石蜡切片技术对成熟黄精种子形态及萌发过程中的形态学变化及解剖结构特征进行了研究,以阐明黄精种子繁殖的生物学机制。结果显示:(1)成熟的黄精种子由外而内依次为种皮、胚乳和胚等3部分组成。其中种皮由一层木质化的细胞组成;胚乳占据种子的大部分结构,胚乳细胞含有大量淀粉,细胞壁增厚;胚处于棒型胚阶段。(2)黄精种子在萌发过程中棒型胚靠近种脐端分化为吸器、子叶联结和子叶鞘,靠近种孔的部位分化出胚根、胚轴和胚芽。(3)黄精种子萌发首先由子叶联结伸长将胚芽和胚根原基推出种孔,紧接着下胚轴膨大形成初生小根茎,吸器留在种子中分解吸收胚乳中的营养物质。(4)通过子叶联结连通吸器和初生小根茎,将胚乳中的营养物质由吸器-子叶联结这个通路转移到初生小根茎中,为初生根茎上胚芽和胚根的进一步分化提供物质保障。(5)黄精种子自然条件下萌发率较低,而且当年不出土。研究表明,黄精种子的繁殖生物学特性是其生态适应的一种重要机制。  相似文献   

7.
黑节草未成熟种子的形态发育及其在离体培养时的表现   总被引:20,自引:0,他引:20  
黑节草(Dendrobium candidum Wall ex Lind.)2—6个月种龄的胚均处于球形胚阶段,不同种龄的胚在体积大小、胚细胞数目、胚细胞内的淀粉粒含量和超微结构上有差异。在离体培养条件下黑节草种子萌发率可达95%,种子萌发后形成原球茎,原球茎可以直接发育形成幼苗,又可以由原球茎产生大量愈伤组织,由愈伤组织再分化发育成幼苗。种子萌发过程中,胚顶端分生组织细胞的淀粉逐渐消耗,淀粉的变化与分生组织和子叶的形成有明显的相关性。  相似文献   

8.
稻胚发育的三维形态研究兼论胚各部分的形态本质   总被引:1,自引:0,他引:1  
运用扫描电镜及塑料半薄切片技术,从水稻(OryzasativaL.)授粉后2d开始至种子成熟,追踪观察了稻胚的三维形态发育,根据结果,对胚各部分的形态本质提出一些新的见解。(1)授粉后2d的胚由胚柄、胚基和胚体组成。胚基为胚柄和胚体之间的过渡区,呈喇叭状,胚基与胚柄不能等同。2d的胚未出现器官分化,属原胚;但胚背腹分化明显,即存在背腹极性。(2)授粉后第3至第5天幼胚的形态变化及器官分化至关重要。盾片和胚芽鞘在授粉后3d的幼胚上同时出现,两者均直接由原胚分化,并非胚芽鞘从盾片发生。胚芽鞘原基经历这3d的特殊形态演变,形成空心倒锥状的胚芽鞘,展现了禾本科特有的胚芽鞘的形态形成机理。3d幼胚胚根的原形成层、基本分生组织及根冠分化;4d幼胚小丘状生长锥形成,胚根的原表皮分化,茎根轴形成;5d幼胚胚芽、胚轴与胚根初步形成。(3)稻胚具有二型子叶,胚套是胚的外围子叶,盾片是此子叶的一个主要部分(侧生子叶),胚芽鞘是顶生子叶。  相似文献   

9.
植物名称:野生大豆(Glycine soja)。材料类别:将野生大豆的成熟种子经消毒后攒种在附加2,4-D2mg/L(单位下同)+BA2的MS培养基上。3天后种子开始膨胀萌发。种子萌发后与培养基接触的部分膨大,形成愈伤组织。培养20天后,切取已部分形成愈伤组织的子叶、上胚轴、下胚  相似文献   

10.
在初中生物(人教版教材)植物学部分的教学中,有关种子萌发条件的演示实验的设计是:在常温下施加不同的控制条件,即足水足氧、足水缺氧和缺水缺氧,并用低温作为对照。通过这个演示实验的结果,只能证明种子萌发所需的外界条件,而无法说明种子萌发所需要的内部条件,即种子的完整性和具活的胚。通常种子前发时需要活的胚这一点,学生很容易理解,但是对于胚的完整性也会影响种子的萌发,却常常被大家所忽略。为此,我们在原来教材的基础上,增加了种子完整性的实验,即除去种子1/3或2/3的子叶,无胚芽或无胚根,同时在常温环境下,施…  相似文献   

11.
Andrew L. Mack 《Biotropica》1998,30(4):604-608
Although large seeds might be more attractive and apparent to seed predators, large seed size could enable tolerance of seed predators. If seeds are large enough to sustain damage that would kill smaller seeds yet still produce viable seedlings, investment above the minimum by the maternal plant could be advantageous. I tested this hypothesis by removing 0–80 percent of the cotyledons of four large-seeded (4–180 g) tree species from Papua New Guinea and monitoring germination and seedling growth for eight months. All species showed little negative effect on seedling size with up to 50 percent removal of cotyledons and the larger species showed a less serious effect on growth than smaller-seeded species above 50 percent removal. Large-seeded species clearly have more than the minimum-required cotyledonary reserves. Observations of viable seedlings with heavily damaged cotyledons suggest that these species withstand attack by rodents and beetles by virtue of their large size.  相似文献   

12.
Prunus necrotic ringspot rvirus (PNRSV) was able to invade the immature apricot seed including the embryo. The amount of virus was very high inside the embryo compared with that present in the cotyledons. PNRSV infection produced an oxidative stress in apricot seeds as indicated by the increase in lipid peroxidation, measured as thiobarbituric acid-reactive substances. This lipid peroxidation increase was parallelled with an imbalance in the seed antioxidant enzymes. A significant decrease in the ascorbate–GSH cycle enzymes as well as in peroxidase (POX) activity took place in infected seeds, suggesting a low capability to eliminate H2O2. No changes in superoxide dismutase (SOD) or catalase activity were observed. A significant decrease in polyphenoloxidase (PPO) activity was also observed. Native PAGE revealed the presence of three different SOD activity bands in apricot seeds: a Mn-containing SOD and two CuZn-containing SODs. Only an isozyme with catalase, glutathione reductase (GR) or PPO activity was detected in both healthy and infected apricot seeds. Regarding POX staining, three bands with POX activity were detected in native gels in both healthy and infected seeds. The gel results emphasise that the drop detected in POX, GR and PPO activities in PNRSV-infected apricot seeds by kinetic analyses was also evident from the results obtained by native PAGE. The oxidative stress and the imbalance in the antioxidant systems from PNRSV-infected apricot seeds resemble the hypersensitive response observed in some virus–host interactions. This defence mechanism would inactivate PNRSV during seed formation and/or the storage period or even during seed germination. Those results can explain the decrease in seed germination and the low transmission of PNRSV by seeds in apricot trees.  相似文献   

13.
木波罗种子脱水敏感性与膜脂过氧化的研究   总被引:2,自引:0,他引:2  
刚采收的木波罗种子含水量为58.6%。随着含水量下降,种子的发芽率和发芽指数迅速下降,种子对脱水非常敏感,是典型的顽拗性种。自然脱水时,种子胚轴和子叶中超氧物歧化酶的活性先上升,然后下降,丙二醛和脂质氢过氧化物的含量显著增加。其脱水敏感性的原因可能是当种子脱水时,植物酶SOD的活性下降,膜脂过氧化作用加强,从而使膜的结构和功能受到破坏,种子生活力丧失。  相似文献   

14.
Low temperature represents one of the principal limitations in species distribution and crop productivity. Responses to chilling include the accumulation of simple carbohydrates and changes in enzymes involved in their metabolism. Soluble carbohydrate levels and invertase, sucrose synthase (SS), sucrose-6-phosphate synthase (SPS) and alpha-amylase activities were analysed in cotyledons and embryonic axes of quinoa seedlings grown at 5 degrees C and 25 degrees C in the dark. Significant differences in enzyme activities and carbohydrate levels were observed. Sucrose content in cotyledons was found to be similar in both treatments, while in embryonic axes there were differences. Invertase activity was the most sensitive to temperature in both organs; however, SS and SPS activities appear to be less stress-sensitive. Results suggest that 1) metabolism in germinating perispermic seeds would be different from endospermic seeds, 2) sucrose futile cycles would be operating in cotyledons, but not in embryonic axes of quinoa seedlings under our experimental conditions, 3) low temperature might induce different regulatory mechanisms on invertase, SS and SPS enzymes in both cotyledons and embryonic axes of quinoa seedlings, and 4) low temperature rather than water uptake would be mainly responsible for the changes observed in carbohydrate and related enzyme activities.  相似文献   

15.

Background and Aims

Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat.

Methods

Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake.

Key Results

Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake.

Conclusions

The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition.Key words: Dry seeds, Glycine max, MRI, seed coat, soaking injury, soybean, testa, role of inner layer of seed coat, water uptake  相似文献   

16.
Apricot seeds could be obtained as a byproduct in different juice or conserve producing industries. Disposal of large amount of apricot seeds is wasting of potentially precious sources of phytochemicals. This study encompassed apricot cultivars that have different origin and flowering time with the aim of providing valuable information about the sugar content in its kernels. High-performance anion-exchange chromatography with pulsed amperometric detection was used for the determination of 22 sugars in the kernels of 70 apricot cultivars. The most common sugars in the apricot kernels are sucrose, fructose, and glucose whose ratio proved to be ripening time dependent (1:1:1 in the early, 1:2:3 in medium and 1:3:3 in the late cultivars). The kernels of the apricot with shorter vegetation period had the highest sum of glucose and fructose compared to other groups. Other sugar components were present in different levels as minor constituents depending on the ripening time. Also, most common sugars and some low-level sugars were strongly correlated to each other, indicating the normal metabolic carbohydrate pathway. To understand the distribution modes of sugars, a principal component analysis was performed.  相似文献   

17.
US Grade 2 soybeans contain about 20% cracked and split seeds, 3% damaged seeds and 2% foreign material. Examination by scanning electron microscopy showed that intact seeds were externally almost free of microorganisms. In cracked seed coats and in damaged areas on broken soybeans, profusely developing fungal mycelia were frequently observed. Fungi penetrated the beans through these cracks and through the micropyle. Penetration through the hilum was observed only in cases where the seed coats showed pronounced signs of damage. No penetration through pore-like structures in the seed coat could be observed. Light microscope observations of sections of naturally infested soybeans showed little penetration into the underlying cell layers. Sections of soybeans kept at 99% r.h. and 26d?C for 4 days revealed profusely developing fungi colonising both seed coat tissue and cotyledons. In the cotyledonous tissue hyphae did not penetrate into the cells but developed only in the intercellular spaces. In inoculated, detached seed coats, fungi developed better on the inner than on the outer side. On cotyledons free of seed coats, fungal development was better than in the seed coat itself. In broken soybeans of commercial stock origin, free fatty acids (FFA), mould count and respiration rate increased 3.5-, 3.5-and 5.0-fold, respectively as compared with intact ones. When broken and intact soybeans were mixed there was no increase in the rate of deterioration. It is concluded that fungi are involved in the increase of FFA in soybeans during storage and that this process is significantly faster in the broken bean fraction.  相似文献   

18.
The Damaging Effect of Water on Dry Pea Embryos During Imbibition   总被引:5,自引:2,他引:3  
When pea seeds were imbibed in water without their seed coats,vital staining revealed that cells on the abaxial surface ofthe cotyledons were dead. No damage occurred on the surfaceof cotyledons when the seeds were imbibed intact, or beneaththe testa when only half of the testa was removed. Cell deathoccurred as a result of rapid water uptake within the first2 min of imbibition, since reducing the rate of imbibition insolutions of Carbowax 4000 lessened the damage. Cell death wasrestricted to the outer layers of the cotyledons; inner tissuesremained alive. These observations supported the hypothesisthat rapid early leakage during imbibition of dry embryos resultedfrom the death of cells caused by the physical disruption ofmembranes. Imbibition damage resulted in reduced respirationand germination, a decline in the rate of food reserve transferfrom the cotyledons to the growing axis, and a lower growthrate in the seedlings produced. Greater sensitivity of embryosto imbibition damage at low temperature, and similarities betweenfeatures of imbibition damage and chilling injury led to thesuggestion that so-called chilling injury is the result of imbibitiondamage rather than the effects of low temperature.  相似文献   

19.
20.
胚轴对萌发豌豆子叶中淀粉酶活性表达的影响   总被引:1,自引:0,他引:1  
萌发豌豆的上、下肢轴均能诱导子叶中淀粉酶活性,外源GA和6—BA具有类似胚轴的作用。离体子叶的淀粉酶凝胶电泳只有一条活性极低的酶带,连生子叶中有两条酶带,其中由胚轴诱导新出现了一条活性很高的同工酶带,它的活性受亚胺环己酮的强烈抑制,而受放线菌素D影响不大。推测豌豆子叶中存在淀粉酶的长寿命mRN—A,胚轴和外源激素的作用在于促进mRNA的翻译。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号