首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chronobiology international》2013,30(6):1039-1059
The endogenous circadian oscillator (the body clock) is slow to adjust to altered rest–activity patterns. As a result, several negative consequences arise during night work and after time‐zone transitions. The process of adjustment can be assessed by measurements of the sleep electroencephalogram (EEG), core temperature or melatonin secretion, for example, but these techniques are very difficult to apply in field studies, and make very great demands upon both experimenters and subjects. We have sought to establish if the activity record, measured conveniently and unobtrusively by a monitor attached to the wrist, can be treated in ways that enable estimates to be made of the disruption caused by changes to the rest–activity cycle, and the process of adjustment to them. In Part A, we describe the calculation and assessment of a series of “activity indices” that measure the overall activity pattern, activity when out of bed or in bed, or the activity in the hours adjacent to going to bed or getting up. The value of the indices was assessed by measuring changes to them in subjects undergoing night work or undergoing time‐zone transitions. In both cases, there is a large body of literature describing the changes that would be expected. First, night workers (working 2 to 4 successive night shifts) were investigated during rest days and night shifts. The indices indicated that night work was associated with lower activity when the subjects were out of bed and higher activity when in bed. Some indices also measured when subjects took an afternoon nap before starting a series of night shifts and gave information about the process of adjustment to night work and recovery from it. Second, in studies from travelers crossing six or more time zones to the east or west, the indices indicated that there were changes to the rest–activity cycle immediately after the flights, both in its overall profile and when activity of the subjects in bed or out of bed was considered, and that adjustment took place on subsequent days. By focusing on those indices describing the activity records during the last hour in bed (LHIB) and the first hour out of bed (FHOB), some evidence was found for incomplete adjustment of the body clock, and for differences between westward and eastward flights. In Part B, the battery of indices are applied to the activity records of long‐haul pilots, whose activity patterns showed a mixture of effects due to night work and time‐zone transitions. Actimetry was performed during the flights themselves and during the layover days (which were either rest or work days). The indices indicated that all pilots had disrupted rest–activity cycles caused by night flights, and that there were added problems for those who had also undergone time‐zone transitions. Rest days were valuable for normalizing the activity profile. For those pilots who flew to the west, adjustment was by delay, though not all aspects of the rest–activity cycle adjusted immediately; for those who flew to the east, some attempted to advance their rest–activity cycle while others maintained home‐based activity profiles. The indices indicated that the activity profile was disrupted more in those pilots who attempted to advance their rest–activity cycle. We conclude that objective estimates of the disruption caused to the rest–activity cycle and the circadian system can be obtained by suitable analysis of the activity record.  相似文献   

2.
Eight nurses have been studied during rest days and three successive night shifts. Measurements of wrist activity have been made and used to assess the extent to which the pattern of daily activity changes between control (rest) days and days involving night work. One analysis considered wrist activity during time spent in bed; this appears to decrease in parallel with the amount of time in bed that is lost during night work but, when this effect is corrected for, there is greater activity during time spent in bed in the daytime compared with control days (when time in bed is during the night). The dichotomy of activity (between lower values during time spent in bed and higher values when out of bed) also decreases if time in bed is during the daytime while on night shifts. These changes in the amount of wrist activity and the dichotomy between activity in and out of bed are related to the changed quality and quantity of sleep that has been measured by self-report questionnaires and the sleep EEG. It is concluded that results from wrist actimetry can provide valuable information regarding the process of adjustment to night work, and that its convenience (to subject and experimenter), coupled with the new analytical approaches described here, make it a viable method for field studies. (Chronobiology International, 13(4), 273-282, 1996)  相似文献   

3.
This study tracked circadian adaptation among airline pilots before, during, and after trips where they flew from Seattle (SEA) or Los Angeles (LAX) to Asia (7--9 time zones westward), spent 7--12?d in Asia, and then flew back to the USA. In Asia, pilots' exposures to local time cues and sleep opportunities were constrained by duty (short-haul flights crossing ≤1 time zone/24?h). Fourteen captains and 16 first officers participated (median age?=?56 versus 48 yrs, p.U)?<?0.001). Their sleep was monitored (actigraphy, duty/sleep diaries) from 3?d pre-trip to 5?d post-trip. For every flight, Karolinska Sleepiness and Samn-Perelli Fatigue scales and 5-min psychomotor vigilance task (PVT) tests were completed pre-flight and at top of descent (TOD). Participants had ≥3 d free of duty prior to outbound flight(s). From 72--24?h prior to departure (baseline sleep), mean total sleep/24?h (TST)?=?7.00?h (SD?=?1.18?h) and mean sleep efficiency?=?87% (SD?=?4.9%). Most pilots (23/30) flew direct to and from Asia, but 7 LAX-based pilots flew via a 1-d layover in Honolulu (HNL). On flights with ≥2 pilots, mean total in-flight sleep varied from 0.40 to 2.09?h outbound and from 0.74 to 1.88?h inbound. Duty patterns in Asia were variable, with ≤2 flights/d (mean flight duration?=?3.53?h, SD?=?0.53?h). TST on days 17 in Asia did not differ from baseline (p.F)?=?0.2031). However, mean sleep efficiency was significantly lower than baseline on days 5--7 (p.F)?=?0.0041). More pilots were on duty between 20:00 and 24:00?h on days 57 (mean?=?21%) than on days 24 (mean?=?14%). Sleep propensity distribution phase markers and chi-square periodogram analyses suggest that adaptation to local time was complete by day 4 in Asia. On pre-flight PVT tests in Asia, the slowest 10% of responses improved for flights departing 14:00--19:59?h (p.F)?=?0.0484). At TOD, the slowest 10% of responses improved across days for flights arriving 14:00--19:59?h (p.F)?=?0.0349) and 20:00--01:59?h (p.F)?=?0.0379). Sleepiness and fatigue ratings pre-flight and at TOD did not change across days in Asia. TST on post-trip day 1 was longer than baseline (estimated mean extension?=?1.68?h; adjusted p(t)?<?0.0001). On all post-trip days, sleep efficiency was comparable to baseline. Sleep propensity distribution phase markers and chi-square periodogram analyses suggest complete readaptation in 12?d. Two opposing influences appeared to affect sleep and PVT performance across days in Asia: progressive circadian adaptation to local time and increasing duty during local night, which displaced sleep from the optimal physiological time. Cumulative sleep restriction across the return flight may explain the large rebound in TST on day 1 post-trip. Thereafter TST, sleep efficiency, and sleep timing suggest that readaptation was complete. Rapid post-trip readaptation may be facilitated by pilots having unconstrained nocturnal sleep opportunities, coupled with stronger patterns of family and social cues than in Asia.  相似文献   

4.
ABSTRACT

Fatigue is recognized as an important safety concern in the transportation industry. In this study, our goal was to investigate how circadian and sleep–wake dependent factors influence St-Lawrence River pilots’ sleep–wake cycle, alertness and psychomotor performance levels at work. A total of 18 male St-Lawrence River ship pilots were recruited to a 16–21-day field study. Pilots’ chronotype, sleepiness and insomnia levels were documented using standardized questionnaires. Their sleep–wake cycle was documented by a sleep–wake log and wrist-worn activity monitoring. Subjective alertness and objective psychomotor performances were assessed ~5×/day for each work and rest day. Ship transits were distributed throughout the 24-h day and lasted on average (± SEM) 5.93 ± 0.67 h. Main sleep periods occurred mainly at night, and objectively lasted 6.04 ± 1.02 h before work days. When going to bed at the end of work days, pilots subjectively reported sleeping 7.64 ± 1.64 h in the prior 24 h. Significant diurnal and wake-dependent effects were observed for subjective alertness and objective psychomotor performance, with minimum levels occurring between 09:00 and 10:00. Thus, despite their irregular work schedule, ship pilots presented, as a group, a diurnal variation of alertness and psychomotor performance indicative of a day-oriented circadian system. Important inter-individual differences were observed on psychomotor performance mesor and phase. In individuals, earlier phases in psychomotor performance were correlated with earlier chronotype. This study indicates that both circadian and homeostatic processes modulate alertness and psychomotor performance levels with worst levels reached when long shifts ended in the morning. This work has potential applications as it indicates fatigue countermeasures considering both processes are scientifically based.  相似文献   

5.
On trips with multiple transmeridian flights, pilots experience successive non-24 h day/night cycles with circadian and sleep disruption. One study across a 9-day sequence of transpacific flights (no in-flight sleep, 1-day layovers between flights) reported an average period in the core body temperature rhythm of 24.6 h (circadian drift). Consequently, pilots were sometimes flying through the circadian performance nadir and had to readapt to home base time at the end of the trip. The present study examined circadian drift in trip patterns with longer flights and in-flight sleep. Thirty-nine B747-400 pilots (19 captains, 20 first officers, mean age = 55.5 years) were monitored on 9- to 13-day trips with multiple return flights between East Coast USA and Japan (in 4-pilot crews) and between Japan and Hawaii (in 3-pilot crews), with 1-day layovers between each flight. Measures included total in-flight sleep (actigraphy, log books) and top of descent (TOD) measures of sleepiness (Karolinska Sleepiness Scale), fatigue (Samn–Perelli Crew Status Check) and psychomotor vigilance task (PVT) performance. Circadian rhythms of individual pilots were not monitored. To detect circadian drift, mixed-model analysis of variance examined whether for a given flight, total in-flight sleep and TOD measures varied according to when the flight occurred in the trip sequence. In addition, sleep propensity curves for pre-trip and post-trip days were examined (Chi-square periodogram analyses). Limited data suggest that total in-flight sleep of relief crew at landing may have decreased across successive East Coast USA–Japan (flights 1, 3, 5 or 7; median arrival 03:45 Eastern Daylight Time (EDT)). However, PVT response speed at TOD was faster on East Coast USA–Japan flights later in the trip. On these flights, circadian drift would result in flights later in the trip landing closer to the evening wake maintenance zone, when sleep is difficult and PVT response speeds are fastest. On Japan–East Coast USA flights (flights 2, 4, 6 or 8; median arrival time 14:52 EDT), PVT response speeds were slower on flight 8 than on flight 2. Circadian drift would move these arrivals progressively earlier in the SCN pacemaker cycle, where PVT response speeds are slower. Across the five post-trip days, 12 pilots (Group A) immediately resumed their pre-trip sleep pattern of a single nocturnal sleep episode; 9 pilots (Group B) had a daytime nap on most days that moved progressively earlier until it merged with nocturnal sleep and 17 pilots (Group C) had nocturnal sleep and intermittent naps. Chi-square periodogram analyses of the sleep propensity curves for each group across baseline and post-trip days suggest full adaptation to EDT from post-trip day 1 (dominant period = 24 h). However, in Groups B and C, the patterns of split sleep post-trip compared to pre-trip suggest that this may be misleading. We conclude that the trends in total in-flight sleep and significant changes in PVT performance speed at TOD provide preliminary evidence for circadian drift, as do persistent patterns of split sleep post-trip. However, new measures to track circadian rhythms in individual pilots are needed to confirm these findings.  相似文献   

6.
The relation of age to the adjustment of the circadian rhythms of oral temperature (T0) and sleepiness (S) in shift work was studied. 145 healthy female nurses underwent detailed laboratory and field measurements. Self-rated sleepiness, and oral temperature measured with a special extended-scale mercury thermometer, were recorded at 2 hr intervals during a morning (M) and 2 consecutive night (N) shifts. Sleeping times were registered during the same days. The results were analyzed separately in the age-groups of 22-29, 30-39 and 40-49-year-old subjects. From the morning shift to the second night shift day, the oral temperature and sleepiness acrophases shifted significantly (p less than 0.001) forward in all age groups. The amplitude decreased in the youngest and in the 30-39-year old age groups but not in the oldest age group. During the second night shift day, the acrophases and amplitudes of oral temperature rhythms were significantly different (P less than 0.05) between the groups, but there were no significant differences by age in the change of the circadian rhythms from morning to the second night shift days. The results thus fail to corroborate that physiological adjustment to night work would be influenced by age.  相似文献   

7.
Twelve healthy adults were studied, singly or in groups of up to four, in an Isolation Unit before (control days) and for 3 days after a simulated time-zone transition to the east across 8 time zones (the clock being changed from 15:00 to 23:00 h). Subjects were free to choose how to pass their waking hours (though naps were forbidden), and to eat what and when they wanted. A wide selection of food was provided, though the subjects had to prepare it. Subjects completed food intake questionnaire on waking and at 3 h intervals during the waking day. This questionnaire assessed the reasons for choosing not to eat a meal or, if a meal was eaten, the reasons for doing so, the type of meal chosen and the reasons for this choice, and subjective responses to the meal (hunger before, enjoyment during, and satiety afterwards). Subjects also recorded the incidence and degree of indigestion and jet lag at 3 h intervals after the time-zone transition. Following the time-zone transition, the subjects experienced significant amounts of jet lag and recorded a significant increase in the incidence of indigestion. They also showed significant changes in their pattern of food intake, but, whereas the patterns of food intake were no longer significantly different from control days by the third post-shift day, the symptoms of jet lag and indigestion were still present then. The distribution of daytime meals was significantly affected on the first post-shift day, with a redistribution of the times that the main, hot meals were eaten; these times indicated some influence of an unadjusted body clock. On this day also, the reasons for determining food intake continued to be dominated by hunger and appetite (hunger even increasing in the frequency with which it was cited), and the reason for not eating a meal, by a lack of hunger. On both control and post-shift days, there was a marked effect of meal type upon the responses to food intake, with cold food being rated least and large hot meals most when appetite before the meal, enjoyment during it, and satiety afterward were considered. However, evidence suggested that the degree to which larger hot meals were preferred to cold meals was significantly less marked after the time-zone transition. On control days, sleep was unbroken; whereas, after the time-zone transition, all subjects woke on at least one of the 3 nights studied. During the first post-shift night, about half of the subjects ate a meal, the reason given being that they were “hungry.” On those occasions when subjects woke but did not eat a meal, the reason cited was because they “could not be bothered” as frequently as because they were “not hungry.”. A simulated time-zone transition is associated with significant changes to the incidence of indigestion, pattern of food intake, and subjective responses to food. However, these changes are generally transient and are only weakly linked to the sensation of jet lag.  相似文献   

8.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

9.
The purpose of this study was to investigate changes in the sleep/wake behavior during on-duty and off-duty periods in three age groups whilst performing shift work. The subjects (29 male shift workers in an electronics assembly plant) were examined using wrist actigraphy. They were monitored during a continuous full-day, three-team, three-shift system involving a forward rotation. The wrist actigraphic data were obtained for 21 days (1 shift cycle) for each subject. The number of episodes of dozing and total time spent dozing during the night shift significantly increased in the group aged more than 36 years, but the activity count significantly decreased. Time asleep at home during the night or evening shifts significantly decreased in those aged more than 36 years as compared to the younger groups, but the activity count in the daytime was significantly increased. From these results, we suggest that the adaptation of sleep behavior during a night shift becomes poorer with increasing age.  相似文献   

10.
Daily mood changes were monitored over successive 24-h periods using the Profile of Mood States (POMS) (3) to assess the effect of nocturnal shiftwork on mood. Twenty-three student nurses, age range 19-24 years, were studied throughout their first experience of nocturnal shiftwork. The POMS was administered over four complete solar days during a 12-week period that included an 8-week block of night work. Five POMS dimensions displayed circadian rhythmicity. vigor-activity; fatigue-inertia; confusion-bewilderment; friendliness; and total-mood-disturbance. These five dimensions were sensitive to changes in living patterns, showing phase shifts in their circadian rhythms when subjects alternated between diurnal and nocturnal living patterns. The dimensions were also observed to be sensitive to adjustment to two different nocturnal shiftwork schedules. The subjects who worked “four on, three off showed similar phase shifts to the subjects who worked “eight on, seven off,” suggesting that mood adjustment takes place by the fourth night of a rotation of nights. The “commitment” of the students to the nocturnal living pattern was thought to have a bearing on the adaptation of the students to the nocturnal shifts, as regards mood.  相似文献   

11.
Night shift work is associated with a myriad of health and safety risks. Phase‐shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a “snapshot” of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (~3500 lux; ~1100 µW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths—especially short wavelengths (“blue‐blockers”)—while traveling home after the shifts, and sleep in the dark (08:30–15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24±0.8 h (mean±SD) at baseline and 7:36±1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00±1.2 h at baseline and drifted to 4:36±1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

12.
《Chronobiology international》2012,29(12):1761-1771
ABSTRACT

Schedule changes associated with rotating shifts can interfere with the circadian rhythms of nurses and thereby affect their sleep duration, sleep quality, work efficiency, and work performance. The objectives of this study was to investigate differences in workday sleep fragmentation, rest-activity cycle, sleep quality, and activity level among nurses working different shifts. After filling out a basic information questionnaire and completing the Pittsburgh Sleep Quality Index (PSQI) questionnaire, participants were asked to wear an actigraph and keep sleep records for seven consecutive days. Data pertaining to wake after sleep onset (WASO), 24-hour autocorrelation coefficient (r24), and daytime activity mean was collected in order to investigate workday sleep fragmentation, rest-activity cycle, and daytime activity level. We obtained complete questionnaires and data from 191 nurses. Day- and evening-shift nurses had more regular workday rest-activity cycles than did night-shift nurses (F = 51.26, p < .001). After controlling for r24 coefficients, we determined that nurses who experienced greater workday sleep fragmentation had higher PSQI scores (β = .18, p = .008). After controlling for WASO times, we determined that nurses who had more regular rest-activity cycles on workdays had lower PSQI scores (β = – .16, p = .036). After controlling for shift type and WASO times, we determined that nurses with higher PSQI scores displayed lower activity levels (β = – .21, p = .015) and those with higher r24 coefficients displayed higher activity levels (β = .18, p = .040) on workdays. We then examined the causal path relationships. Among the shifts, only the day-shift nurses had a higher r24 (β = ?.59, p < .001) than did the night-shift nurses; WASO exerted a significant impact on PSQI scores (β = .20, p = .002); r24 had a significant and negative influence on PSQI scores (β = ?.38, p < .001), and PSQI scores significantly and negatively influenced workday activity levels (β = ?.20, p = .006). This study determined that day- and evening-shift nurses enjoyed more regular and consistent rest-activity cycles than did night-shift nurses; nurses with greater workday sleep fragmentation and/or more irregular rest-activity cycles experienced poorer sleep quality; and nurses suffering from poorer sleep quality displayed lower daytime activity levels on workdays.  相似文献   

13.
Twelve healthy participants were studied in an Isolation Unit. For the first 7 (control) days, subjects lived on UK time. Then the clock was advanced by 8 h, mimicking an eastward time-zone transition, and for days 8 to 12, participants lived on this new local time. Two constant routines (participants were not allowed to sleep, were restricted in movement, and ate regular, identical snacks) were undertaken, during the control days (days 3 to 4) and at the end of the experiment (days 11 to 12). Rectal temperature and activity were measured throughout, with activity used to correct the measured temperatures for the direct (masking) effects of the sleep-wake cycle. Phase changes of the temperature rhythm between the constant routines were assessed by cross-correlation and cosinor analysis. During days 8 to 10, the measured temperatures and those that had been corrected (purified) for masking were assessed by the same two methods, and the shifts were extrapolated to predict the values expected during the second constant routine. Individuals differed widely in the phase shifts of the temperature rhythm, but the correlations between the changes measured by constant routines and those estimated by the purification methods were high (r=0.771 to 0.903), and the differences between them were not significantly different from zero (p>0.24). Phase shifts of the measured (masked) temperature rhythm were poorer predictors of the shift obtained from the constant routines (r3+/-4.5 h). Limitations of the methods due to the variability of results are discussed, but we conclude that the mean phase shifts obtained from purified, but not raw, temperature data show acceptable agreement with those found using our version of the constant routine.  相似文献   

14.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

15.
In response to eastbound transmeridian flights, which result in zeitgeber phase advance shifts, adaptation of the circadian system to the new time zone by phase delays and advances are observed. The delay response to an advance zeitgeber shift has been called an antidromic response. For the shift at which the transition from an advance to an antidromic response occurs, the term critical shift is introduced.

For the study of critical shifts, a flight experiment across nine time zones and numerical simulations of a van der Pol equation have been evaluated. The interest is focussed on the determination of a range for critical abrupt shifts. An abrupt shift means that the ensemble of zeitgebers including geophysical zeitgebers and the rest-activity cycle is shifted immediately in the new time zone. The range of critical advance shifts has been estimated to reach from + 7 to + 10 hr. In the literature, results were reported which would imply a much wider range. The discussion of these observations shows that the actual shifts were presumably not abrupt in the quoted experiments.

The consequences of critical shifts for jet lag symptoms are investigated. If reduced circadian amplitudes and long times taken for the resynchronization contribute to the feeling of jet lag, the symptoms will be worst for shifts close to the critical one, as numerical simulations revealed. Manipulations of such shifts with the aim to alleviate jet lag are discussed.  相似文献   

16.
International commercial airline pilots may experience heightened fatigue due to irregular sleep schedules, long duty days, night flying, and multiple time zone changes. Importantly, current commercial airline flight and duty time regulations are based on work/rest factors and not sleep/wake factors. Consequently, the primary aim of the current study was to investigate pilots' amount of sleep, subjective fatigue, and sustained attention before and after international flights. A secondary aim was to determine whether prior sleep and/or duty history predicted pilots' subjective fatigue and sustained attention during the international flights. Nineteen pilots (ten captains, nine first officers; mean age: 47.42+/-7.52 years) participated. Pilots wore wrist activity monitors and completed sleep and duty diaries during a return pattern from Australia to Europe via Asia. The pattern included four flights: Australia-Asia, Asia-Europe, Europe-Asia, and Asia-Australia. Before and after each flight, pilots completed a 5 min PalmPilot-based psychomotor vigilance task (PVT) and self-rated their level of fatigue using the Samn-Perelli Fatigue Checklist. Separate repeated-measures ANOVAs were used to determine the impact of stage of flight and flight sector on the pilots' sleep in the prior 24 h, self-rated fatigue, and PVT mean response speed. Linear mixed model regression analyses were conducted to examine the impact of sleep in the prior 24 h, prior wake, duty length, and flight sector on pilots' self-rated fatigue and sustained attention before and after the international flights. A significant main effect of stage of flight was found for sleep in the prior 24 h, self-rated fatigue, and mean response speed (all p < 0.05). In addition, a significant main effect of flight sector on self-rated fatigue was found (p < .01). The interaction between flight sector and stage of flight was significant for sleep in the prior 24 h and self-rated fatigue (both p < .05). Linear mixed model analyses indicated that sleep in the prior 24 h was a significant predictor of self-rated fatigue and mean response speed after the international flight sectors. Flight sector was also a significant predictor of self-rated fatigue. These findings highlight the importance of sleep and fatigue countermeasures during international patterns. Furthermore, in order to minimize the risk of fatigue, the sleep obtained by pilots should be taken into account in the development of flight and duty time regulations.  相似文献   

17.
“Permanent” or “fixed” night shifts have been argued to offer a potential benefit over rotating shift systems in that they may serve to maximize circadian adjustment and hence minimize the various health and safety problems associated with night work. For this reason, some authors have argued in favor of permanent shift systems, but their arguments assume at least a substantial, if not complete, adjustment of the circadian clock. They have emphasized the finding that the day sleeps taken between successive night shifts by permanent night workers are rather longer than those of either slowly or rapidly rotating shift workers, but this could simply reflect increased pressure for sleep. The present paper reviews the literature on the adjustment to permanent night work of the circadian rhythm in the secretion of melatonin, which is generally considered to be the best known indicator of the state of the endogenous circadian body clock. Studies of workers in “abnormal” environments, such as oil rigs and remote mining operations, were excluded, as the nature of these unique settings might serve to assist adjustment. The results of the six studies included indicate that only a very small minority (<3%) of permanent night workers evidence “complete” adjustment of their endogenous melatonin rhythm to night work, less than one in four permanent night workers evidence sufficiently “substantial” adjustment to derive any benefit from it, there is no difference between studies conducted in normal or dim lighting, and there is no evidence of gender difference in the adjustment to permanent night work. It is concluded that in normal environments, permanent night‐shift systems are unlikely to result in sufficient circadian adjustment in most individuals to benefit health and safety.  相似文献   

18.
Quality of life (QoL) is estimated from patients scores to items related to everyday life, including rest and activity. The rest-activity rhythm reflects endogenous circadian clock function. The relation between the individual rhythm in activity and QoL was investigated in 200 patients with metastatic colorectal cancer. Patients wore a wrist actigraph (Ambulatory Monitoring Inc., New York. NY) for 3-5 d before chronotherapy, and completed a QoL questionnaire developed by the European Organization for Research and Treatment of Cancer (QLQ-C30) plus the Hospital Anxiety and Depression Scale. The rest-activity circadian rhythm was characterized by the mean activity level (m), autocorrelation coefficient at 24h (r24), and the dichotomy index (I < O). a ratio between the amount of activity while in and out of bed. The distribution of the rest-activity cycle parameters and that of QoL scores was independent of sex, age, primary tumor, number of metastatic sites, and prior treatment. Both the 24h rhythm indicators were positively correlated with global QoL score as well as physical, emotional, and social functioning. Negative correlations were found between m, r24, or I < O and fatigue, appetite loss, and nausea. The rest-activity circadian rhythm appeared to be an objective indicator of physical welfare and QoL. This analysis suggests that circadian function may be one of the biological determinants of QoL in cancer patients.  相似文献   

19.
The amplitude and phasing of circadian rhythms are under discussion as possible predictors of tolerance to night work. In a field study, subjective sleepiness and oral temperature of 147 female nurses were measured at 2-hour intervals during a period with one morning shift and two consecutive night shifts. The nurses also filled out a questionnaire. Two types of tolerance indices were constructed: The “health index” was based on questions referring to general fatigue, gastrointestinal symptoms, and sleep disturbances, and the “sleepiness index” on the actual subjective ratings of sleepiness. According to the health index, the group with good tolerance had a larger circadian amplitude of the oral temperature rhythm on the day of the morning shift than the group with poor tolerance. However, with regard to the sleepiness index, the corresponding difference between the groups with good or poor tolerance was not significant. The data did not confirm the hypothesis that predicts a quick adjustment of the circadian rhythm when the circadian amplitude is small before the change to night work. The contradictory results found in this and in other studies do not yet permit prediction of tolerance to night work.  相似文献   

20.
"Permanent" or "fixed" night shifts have been argued to offer a potential benefit over rotating shift systems in that they may serve to maximize circadian adjustment and hence minimize the various health and safety problems associated with night work. For this reason, some authors have argued in favor of permanent shift systems, but their arguments assume at least a substantial, if not complete, adjustment of the circadian clock. They have emphasized the finding that the day sleeps taken between successive night shifts by permanent night workers are rather longer than those of either slowly or rapidly rotating shift workers, but this could simply reflect increased pressure for sleep. The present paper reviews the literature on the adjustment to permanent night work of the circadian rhythm in the secretion of melatonin, which is generally considered to be the best known indicator of the state of the endogenous circadian body clock. Studies of workers in "abnormal" environments, such as oil rigs and remote mining operations, were excluded, as the nature of these unique settings might serve to assist adjustment. The results of the six studies included indicate that only a very small minority (<3%) of permanent night workers evidence "complete"adjustment of their endogenous melatonin rhythm to night work, less than one in four permanent night workers evidence sufficiently "substantial" adjustment to derive any benefit from it, there is no difference between studies conducted in normal or dim lighting, and there is no evidence of gender difference in the adjustment to permanent night work. It is concluded that in normal environments, permanent night-shift systems are unlikely to result in sufficient circadian adjustment in most individuals to benefit health and safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号