首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang T  Su YJ  Li XY  Zheng B  Chen GP  Zeng QL 《Hereditas》2004,140(1):8-17
RAPD markers and sequences of chloroplast DNA (cpDNA) atpB-rbcL intergenic spacers were used to characterize the pattern of genetic variation and the phylogenetic relationships of the relict populations of Alsophila spinulosa located in Jian Feng Ling (JFL) and Diao Luo Shan (DLS), Hainan, and Tang Lang Shan (TLS), Ding Hu Shan (DHS), and Da Xi Shan (DXS), Guangdong, of southern China. 28 random primers generated 118 bands, out of which 26 (22.03%) were polymorphic loci, distinguishing 17 different RAPD phenotypes. Percentage of polymorphic loci, Shannon phenotypic diversity and Nei's gene diversity comprehensively indicated that JFL possessed the highest diversity, TLS and DHS in intermediate and DLS or DXS the least; the corresponding values of the population appeared correlated with the population size. Differentiation was detected among populations of A. spinulosa (1-Hpop/Hsp=0.7453, GST=0.7763, and phist=0.8145). AMOVA showed that 47.44% of the variance was partitioned among regions (Hainan and Guangdong), 34.01% attributed among populations within regions, whereas only 18.55% occurring within populations. Low level of intra-specific diversity was maintained in A. spinulosa with Shannon diversity and gene diversity merely 0.0560 and 0.0590, repectively. Sequence length of atpB-rbcL intergenic spacer varied from 724 bp to 730 bp. Base composition was with A+T content between 63.17% and 63.70%. 13 haplotypes of atpB-rbcL noncoding spacers were identified. UPGMA dendrogram of RAPD phenotypes, principal components analysis based on RAPD patterns, minimum spanning network and neighbour-joining (NJ) tree established on atpB-rbcL haplotypes consistently suggested the geographical subdivision of populations of A. spinulosa between Hainan and Guangdong. Breeding system and conservation strategy of A. spinulosa was discussed based on the information of population genetic structure and variation.  相似文献   

2.
Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci ( atpB-rbcL spacer, rps4 gene, and trnL intron and 3'spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown.  相似文献   

3.
Vivipary with precocious seedlings in mangrove plants was thought to be a hindrance to long-range dispersal. To examine the extent of seedling dispersal across oceans, we investigated the phylogeny and genetic structure among East Asiatic populations of Kandelia candel based on organelle DNAs. In total, three, 28 and seven haplotypes of the chloroplast DNA (cpDNA) atpB-rbcL spacer, cpDNA trnL-trnF spacer, and mitochondrial DNA (mtDNA) internal transcribed spacer (ITS) were identified, respectively, from 202 individuals. Three data sets suggested consistent phylogenies recovering two differentiated lineages corresponding to geographical regions, i.e. northern South-China-Sea + East-China-Sea region and southern South-China-Sea region (Sarawak). Phylogenetically, the Sarawak population was closely related to the Ranong population of western Peninsula Malaysia instead of other South-China-Sea populations, indicating its possible origin from the Indian Ocean Rim. No geographical subdivision was detected within the northern geographical region. An analysis of molecular variance (AMOVA) revealed low levels of genetic differentiation between and within mainland and island populations (phiCT = 0.015, phiSC = 0.037), indicating conspicuous long-distance seedling dispersal across oceans. Significant linkage disequilibrium excluded the possibility of recurrent homoplasious mutations as the major force causing phylogenetic discrepancy between mtDNA and the trnL-trnF spacer within the northern region. Instead, relative ages of alleles contributed to non-random chlorotype-mitotype associations and tree inconsistency. Widespread distribution and random associations (chi2 = 0.822, P = 0.189) of eight hypothetical ancestral cytotypes indicated the panmixis of populations of the northern geographical region as a whole. In contrast, rare and recently evolved alleles were restricted to marginal populations, revealing some preferential directional migration.  相似文献   

4.
Sagittaria trifolia L. is a perennial, erect herb that is confined to ponds, rice fields, ditches, and freshwater wetlands. Using chloroplast DNA (cpDNA) atpB-rbcL intergenic spacer sequences, we studied the phylogeographic pattern and demographic history of S. trifolia with 108 samples from 42 populations representing the entire geographic range in China. Twenty-seven haplotypes were characterized and two of them were widely distributed in the populations. In the minimum-spanning network, all tip haplotypes were unique to a particular population, while the interior nodes represented widespread haplotypes. Nested clade analysis (NCA) of cpDNA haplotypes indicated that long distance dispersal characterized the post-glacial recolonization of S. trifolia in China. No specific refugia areas were suggested because genetic differentiation was low among the sampled regions and among populations within regions although a large number of the haplotypes were unique to a single population. The present data support that the unique haplotypes in individual population most likely represent recent mutational derivatives after long distance dispersal rather than the relics in refugia. These results for S. trifolia represent the first phylogeographic analysis of a widespread marsh herb in China and support the importance of long distance dispersal events in the post-glacial migrations of plants.  相似文献   

5.
The genetic variation of Trigonobalanus verticillata, the most recently described genus of Fagaceae, was studied using chloroplast DNA sequences and AFLP fingerprinting. This species has a restricted distribution that is known to include seven localities in tropical lower montane forests in Malaysia and Indonesia. A total of 75 individuals were collected from Bario, Kinabalu, and Fraser's Hill in Malaysia. The sequences of rbcL, matK, and three non-coding regions (atpB-rbcL spacer, trnL intron, and trnL-trnF spacer) were determined for 19 individuals from these populations. We found a total of 30 nucleotide substitutions and four length variations, which allowed identification of three haplotypes characterizing each population. No substitutions were detected within populations, while the tandem repeats in the trnL -trnF spacer had a variable repeat number of a 20-bp motif only in Kinabalu. The differentiation of the populations inferred from the cpDNA molecular clock calibrated with paleontological data was estimated to be 8.3 MYA between Bario and Kinabalu, and 16.7 MYA between Fraser's Hill and the other populations. In AFLP analysis, four selective primer pairs yielded a total of 431 loci, of which 340 (78.9%) were polymorphic. The results showed relatively high gene diversity (H(S) = 0.153 and H(T) = 0.198) and nucleotide diversity (pi(S) = 0.0132 and pi(T) = 0.0168) both within and among the populations. Although the cpDNA data suggest that little or no gene flow occurred between the populations via seeds, the fixation index estimated from AFLP data (F(ST) = 0.153 and N(ST) = 0.214) implies that some gene flow occurs between populations, possibly through pollen transfer.  相似文献   

6.
Although morphologically well defined, the phylogeny and taxonomy of Myosotis has been uncertain. In particular it has been unclear whether the genus had a Northern Hemisphere or Australasian origin. However, separate analyses of the ITS and the 3' region of matK, as well as a combined analysis of ITS, 3' matK, the psbA-trnA spacer, and 3' ndhF regions indicate that several distinct lineages exist within Myosotis and strongly support a Northern Hemisphere origin for the genus. Further, the observed transoceanic distributions and levels of genetic divergence between lineages indicate that long distance dispersal has been important for establishing the current geographic range expansion of Myosotis. Our molecular data also suggest that the diversification of Australasian Myosotis has occurred since the late Tertiary and is largely due to radiation within and from New Zealand. This inference is consistent with the findings of recent phylogenetic studies on other New Zealand alpine genera. Our results highlight the important role played by late Tertiary and Quaternary climate change in explaining current floristic diversity. The genetic relationships reported here also suggest that the current infrageneric taxonomy of Myosotis does not fully reflect the evolution of the genus.  相似文献   

7.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

8.
Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5'rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta.  相似文献   

9.
Phylogenetic relationships, demographic history, and geographic distribution of the mtDNA haplotypes of the mallard Anas platyrhynchos were examined in three populations, Indian, Northern European, and Far Eastern. Two divergent halotype groups, A and B, were found in the Far Eastern population, while haplotypes identified in Northern European and Far Eastern populations were exclusively of the A group. The presence of B group haplotypes in the Far Eastern population can be explained either in terms of hybridization of the mallard with spot-billed duck Anas zonorhyncha at the south of the Russian Far East, or by the mtDNA paraphyly in mallards. In general, mallards from Eurasia were characterized by low genetic population differentiation along with slightly expressed phylogeographic structure. The most differentiated was the population from India (??st = 0.076?0.077), while the difference between Northern European and Far Eastern populations was extremely low (??st = 0.0029). Differentiation of Anas platyrhynchos Indian population was determined by the fact that a part of the population, inhabiting southern and eastern coasts of the Hindustan Peninsula, was resident.  相似文献   

10.
The genetic variation and structure of Sladenia celastrifolia Kurz, a species of conservation concern, were investigated. Analyses of two chloroplast DNA loci (trnS-trnGand atpB-rbcL intergenic regions) were carried out for 24 populations of S. celastrifolia and five haplotypes were identified. High levels of genetic differentiation (GST = 1, FST = 1) were detected, which may be a result of limited gene flow caused by geographic isolation. Analysis of molecular variance suggests that the existence of marked phylogeographical structure within the haplotype distribution is probably due to geographic barriers among populations. The haplotype network and mismatch distribution analyses did not detect any signals for recent population expansions in S. celastrifolia. Thus, it can be inferred that the species likely persistedin situ during climatic oscillations. Considering its genetic diversity and uniqueness, conservation strategies are further discussed for this species.  相似文献   

11.
Roberts MA  Schwartz TS  Karl SA 《Genetics》2004,166(4):1857-1870
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model.  相似文献   

12.
Global phylogeographic patterns in Sanionia uncinata are addressed based on information in internal transcribed spacer (ITS) (214 specimens) and the plastid markers trnLtrnF (221) and rpl16 (217). ITS suggests a monophyletic Sanionia and a paraphyletic S. uncinata; this was neither supported nor rejected by plastid data. Northern or Eastern Eurasia and Alaska appear important in the early evolution of Sanionia and some populations dispersed into the Southern Hemisphere relatively early. Some haplotypes or groups of haplotypes are morphologically and ecologically distinct, biologically meaningful units that correspond with S. orthothecioides, S. symmetrica and S. georgicouncinata s.l. The latter includes two species that are indistinguishable by morphology, S. georgicouncinata s.s. (Southern Hemisphere) and S. nivalis (Northern Hemisphere). Tropical African and South American S. uncinata populations have separate origins and the Southern Hemisphere was colonized at least twice. In the northern circum‐Arctic region, the haplotype composition differs between the North Atlantic and Beringian areas. Eastern Eurasia has a higher S. uncinata haplotype diversity than other Holarctic regions, implying less devastating effects of recurrent glacial periods. For Eastern and Western Eurasia, North America and the Southern Hemisphere, most of the haplotype variation was found within the regions, but 14–18% can be referred to among region variation. Plastid haplotype diversity was lower in the Southern Hemisphere than in the Arctic to subarctic, possibly attributable to founder effects. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 19–42.  相似文献   

13.
We propose a method of analysing genetic data to obtain separate estimates of the size (N(p)) and migration rate (m(p)) for the sampled populations, without precise prior knowledge of mutation rates at each locus ( micro(L)). The effects of migration and mutation can be distinguished because high migration has the effect of reducing genetic differentiation across all loci, whereas a high mutation rate will only affect the locus in question. The method also takes account of any differences between the spectra of immigrant alleles and of new mutant alleles. If the genetic data come from a range of population sizes, and the loci have a range of mutation rates, it is possible to estimate the relative sizes of the different N(p) values, and likewise the m(p) and the micro(L). Microsatellite loci may also be particularly appropriate because loci with a high mutation rate can reach mutation-drift-migration equilibrium more quickly, and because the spectra of mutants arriving in a population can be particularly distinct from the immigrants. We demonstrate this principle using a microsatellite data set from Mauritian skinks. The method identifies low gene flow between a putative new species and populations of its sister species, whereas the differentiation of two other populations is attributed to small population size. These distinct interpretations were not readily apparent from conventional measures of genetic differentiation and gene diversity. When the method is evaluated using simulated data sets, it correctly distinguishes low gene flow from small population size. Loci that are not at mutation-migration-drift equilibrium can distort the parameter estimates slightly. We discuss strategies for detecting and overcoming this effect.  相似文献   

14.
In this study, we analyzed the genetic structure and phylogeography of Sphaeropteris brunoniana from China and Laos. Combining cpDNA trnL-trnF and atpB-rbcL sequence variations, five haplotypes were identified from the 10 investigated populations. Moderate haplotype diversity (h= 0.66580) and low nucleotide diversity (π= 0.23 × 10−3) were detected. The S. brunoniana in Yunnan region had much higher genetic diversity (h= 0.60195, π= 0.35 × 10−3) than that of Hainan–Laos (h= 0.00000, π= 0.00). A high level of genetic differentiation (94.74%) between the two regions was revealed by amova. Nested clade analysis identified two major clusters of the five haplotypes, one clade in the Yunnan region and the other in Hainan–Laos. The analysis indicated that restricted gene flow with isolation by distance and allopatric fragmentation were likely the major processes that shaped the spatial distribution of the haplotypes. The isolated distribution of clades implied the emergence of independent refugia of this species in each region during Quaternary glaciations. The Yunnan populations frequently contained an ancestral haplotype, and most of them harbored other descendent haplotypes. Based on the distribution pattern of haplotypes and the nested clade analysis results, the Yunnan region potentially had several refugia of this species during glacial periods, whereas the Hainan populations were probable new colonizations.  相似文献   

15.
Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback.  相似文献   

16.
Methionine synthase is a key enzyme for the synthesis of the aspartate-derived methionine, the immediate precursor of S-adenosyl-methionine, which has been illustrated to be associated with plant growth and pathogen interactions. In this study we tested the positive selection hypothesis of molecular evolution of the methionine synthase gene in Dunnia sinensis. In the entire sample of 87 sequences, 22 haplotypes of introns and 16 haplotypes of exons were identified. An excess of polymorphism over the neutral expectation for the class of unique nucleotide polymorphisms was observed in both exon and intron sequences. Ten replacement substitutions versus six synonymous substitutions among lineages, although nonsignificant, revealed that some advantageous mutants might have been favored. The distribution of d(N)/d(S) > 1 at nodes between closely related haplotypes in the gene network also indicated weak and variable positive selection. Nevertheless, low levels of genetic diversity in exons (theta; = 0.0052) and introns (theta; = 0.0070) of the methionine synthase gene of the outcrossing Dunnia were also attributed to the endangered status of the species. The atpB-rbcL intergenic spacer of cpDNA and the ribosomal internal transcribed spacer of mtDNA were used to discern the relative effectiveness of natural selection from intrinsic evolutionary forces. The low levels of nucleotide polymorphisms in both organelle spacers and the significant population differentiation reflected the effect of population-species history and demography. Two major lineages of the methionine synthase gene genealogy were recovered corresponding to two geographic regions, a result that was consistent with organelle phylogenies. Both past fragmentation and recent habitat disturbance causing complete bottlenecks may have resulted in population decline and geographic isolation and may have led to the depletion of genetic variation at loci in nuclear and organelle genomes.  相似文献   

17.
In this study, we analyzed the genetic structure and phylogeography of Sphaeropteris brunoniana from China and Laos. Combining cpDNA trnL-trnF and atpB-rbcL sequence variations, five haplotypes were identi- fied from the 10 investigated populations. Moderate haplotype diversity (h = 0.66580) and low nucleotide diver- sity (π = 0.23 × 10 ?3 ) were detected. The S. brunoniana in Yunnan region had much higher genetic diversity (h = 0.60195, π = 0.35 × 10 ?3 ) than that of Hainan–Laos (h = 0.00000, π = 0.00). A...  相似文献   

18.
Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow.  相似文献   

19.
《Genomics》2020,112(6):3943-3950
Following Hardy-Weinberg disequilibrium (HWD) occurring at a single locus and linkage disequilibrium (LD) between two loci in generations, we here proposed the third genetic disequilibrium in a population: recombination disequilibrium (RD). RD is a measurement of crossover interference among multiple loci in a random mating population. In natural populations besides recombination interference, RD may also be due to selection, mutation, gene conversion, drift and/or migration. Therefore, similarly to LD, RD will also reflect the history of natural selection and mutation. In breeding populations, RD purely results from recombination interference and hence can be used to build or evaluate and correct a linkage map. Practical examples from F2, testcross and human populations indeed demonstrate that RD is useful for measuring recombination interference between two short intervals and evaluating linkage maps. As with LD, RD will be important for studying genetic mapping, association of haplotypes with disease, plant breading and population history.  相似文献   

20.
The geographical distribution of chloroplast DNA (cpDNA) haplotypes and nuclear ribosomal internal transcribed spacer (nrITS) genotypes of Japanese Corylopsis (Hamamelidaceae), which consists of four species, was investigated. Two hundred and five individuals belonging to four species from 30 populations, covering the entire geographical range, were studied. Based on approximately 1108 bp of the three non-coding regions of cpDNA, nine haplotypes were detected, and each was distinguished from adjacent haplotypes by one substitution. Based on approximately 507-bp nrITS sequences, 47 genotypes were detected, for which three clades were identified in the phylogenetic analysis. There was inconsistency between the cpDNA haplotypes, nrITS genotypes, and classification of Corylopsis taxa, possibly because of incomplete lineage sorting or introgressive hybridization. The distribution of the haplotypes was highly structured geographically, and N ST (0.893) was significantly greater than G ST (0.819), implying that the current distribution of Corylopsis species was structured phylogeographically during Quaternary climatic oscillations. The haplotype composition and results of analysis of molecular variance showed that the populations in Hokuriku were highly divergent, suggesting that they are long-term persistent populations arising from refugia during the Quaternary climatic oscillations. Refugial populations in Chugoku and Shikoku may have lost genetic diversity because of a bottleneck resulting from a small population size, followed by post-glacial range expansion. Pre-existing refugia may have been so small that the subsequent range expansion replaced the pre-existing genetic structure.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 501–518.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号