首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a sudden increase in pH to initiate a release of calcium from isolated skeletal and cardiac muscle sarcoplasmic reticulum following calcium accumulation in the absence of a precipitating anion (calcium binding) is described. In skeletal sarcoplasmic reticulum a sudden increase in pH caused a rapid release of accumulated calcium. In cardiac sarcoplasmic reticulum a sudden increase in pH before the calcium binding process was complete caused the release of a small amount of calcium at a relatively slow rate. A sudden change in pH after the completion of calcium binding failed to trigger a release of calcium. The effect of pH on oxalate supported calcium uptake and on unidirectional calcium efflux rate by cardiac sarcoplasmic reticulum was also studied. Both the rate of calcium uptake and of unidirectional calcium efflux increased as the pH was raised from 6.4 to 7.2, reflecting an increased permeability of the sarcoplasmic reticulum membrane to calcium. These results indicate that in cardiac muscle a sudden increase in pH is unlikely to be the in vivo signal for calcium release from the sarcoplasmic reticulum. However, the effect of pH on calcium uptake and efflux by cardiac sarcoplasmic reticulum may contribute to the negative inotropic effect of an acidosis on the heart.  相似文献   

2.
Cardiac muscle requires an external source of calcium for contraction, but current evidence supports an intracellular pool of bound calcium as the primary activator of contraction. The size of this intracellular pool modulates the amount of calcium released to troponin during systole and the resultant contractile response. Proposed mechanisms for modulation of activator calcium include: 1) an alteration in phase II "slow current" allowing increased electrogenic calcium flux; 2) a glycoside independent sodium-calcium exchange across the sarcolemma that can be modulated by changes in the sodium gradient; 3) potassium-calcium exchange system during cardiac repolarization; 4) an augmentation of calcium accumulation by cardiac sarcoplasmic reticulum related to various phosphorylation mechanisms; and 5) an alteration in phospholipid affinity effected by cardiac glycoside at sarcolemmal sites related to the Na+, K+-ATPase.  相似文献   

3.
4.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange.  相似文献   

5.
Summary To investigate calcium distribution in cardiac muscle cells, two methods, one using oxalate and another using lead acetate, were used concomitantly to determine the subcellular localization of calcium. Particular attention was paid to the specificity of the methods employed. Chemical and physical analyses of the electron-opaque deposits of the reaction end-products was performed by chelation with EGTA or X-ray and electron diffraction. Results obtained show that the distribution of the calcium deposits in the cardiac muscle cells is more complex than that described for striated muscle fibers. The implications of these findings are discussed and an original viewpoint on the calcium distribution and movement in cardiac muscle cells is presented.  相似文献   

6.
Phosphatidate releases calcium from cardiac sarcoplasmic reticulum   总被引:3,自引:0,他引:3  
Phosphatidate (PA) inhibits calcium accumulation by cardiac sarcoplasmic reticulum (SR) and enhances its Ca++ ATPase activity. These effects seem to be related to a phosphatidate-induced increase in the calcium permeability of the SR membrane with resultant calcium release. The amount of calcium released by phosphatidate is dependent both on the calcium concentration outside the SR vesicles and the internal calcium concentration. The ionophoric effects of phosphatidate on the sarcoplasmic membrane provide a novel pathway for controlling Ca++ transport in the cardiac cell.  相似文献   

7.
The effect of intravesicular and extravesicular calcium concentration on the passive efflux from sarcoplasmic reticulum (SR) vesicles isolated from cardiac and skeletal muscle was determined by measuring net efflux of calcium after stopping pump-mediated fluxes. The apparent permeability, calculated as the passive efflux divided by the total intravesicular calcium, depended on calcium load. This dependence of the apparent permeability on calcium load could be explained by the presence of intravesicular calcium-binding sites with a dissociation constant less than 10(-3) M. When the intravesicular bound calcium was taken into account, passive calcium efflux was found to be linearly related to the difference in calcium concentration across the SR membrane. Thus the permeability of the SR membrane is independent of intravesicular and extravesicular calcium concentration in the ranges investigated. The average first order rate constant for passive calcium efflux for six preparations was 0.8 +/- 0.2 min-1 for skeletal and 0.7 +/- 0.1 min-1 for cardiac SR. The amount of intravesicular bound calcium for the same preparations was 33 +/- 6 nmol mg-1 for skeletal and 13 +/- 2 nmol mg-1 for cardiac SR. The first order rate constants were unaffected by Mg concentration between 0.1 +/- 15.1 mM and by the presence of an ATP-regenerating system. The results suggest that some minimal calcium load may be required in order to observe a substantial passive calcium efflux, the passive calcium efflux is not carrier mediated, and passive calcium efflux is not a likely route of calcium release during excitation-contraction coupling.  相似文献   

8.
There has been considerable interest in pursuing phospholamban as a putative therapeutic target for overcoming depressed calcium handling in human heart failure. Studies predominantly done in mice have shown that phospholamban is a key regulator of sarcoplasmic reticulum calcium cycling and cardiac function. However, mice differ significantly from humans in how they regulate calcium, whereas rabbits better recapitulate human cardiac function and calcium handling. To investigate phospholamban’s role in the rabbit heart, transgenic rabbits that overexpressed wild-type phospholamban in the ventricular cardiomyocytes and slow-twitch skeletal muscles were generated. Rabbits expressing high levels of phospholamban were not viable due to severe skeletal muscle wasting, the onset of cardiac pathology and early death. A viable transgenic line exhibited a 30% increase in PLN protein levels in the heart. These animals showed isolated foci of cardiac pathology, but cardiac function as well as the response to β-adrenergic stimulation were normal. SR-calcium uptake measurements showed that the transgenic hearts had the expected reduced affinity for calcium. The data show that phospholamban-overexpressing transgenic rabbits differ markedly in phenotype from analogous transgenic mice in that rabbits are quite sensitive to alterations in phospholamban levels. Exceeding a relatively narrow window of phospholamban expression results in significant morbidity and early death.  相似文献   

9.
To elucidate changes of human cardiac valves with aging, the authors determined age-related changes of element contents in the four human cardiac valves by inductively coupled plasma-atomic emission spectrometry and attempted to examine the relationships in the element contents among the four cardiac valves. The subjects consisted of 10 men and 15 women, ranging in age from 65 to 102 yr. The accumulation of calcium and phosphorus was the highest in the aortic valve, and decreased in the order mitral, pulmonary, and tricuspid valves. The contents of calcium and phosphorus in the aortic valves corresponded to about 12 and 19 times the amounts of those in the tricuspid valves, in which the contents were very low. The contents of calcium and phosphorus in the aortic valves were about 2.5-fold the amounts of those in the mitral valves. An examination was attempted to determine whether or not there were relationships in element contents among the four cardiac valves. As for the aortic and mitral valves, there were no relationships in the contents of calcium and phosphorus between them, but there were relationships in the contents of sulfur and magnesium between them. Three out of 24 cases contained high contents of calcium and phosphorus in both the mitral and aortic valves, whereas 16 out of 24 cases contained high contents of calcium and phosphorus in the aortic valves alone, without the high contents in the mitral valves. Likewise, there were no relationships in the element contents, such as calcium, phosphorus, sulfur, and magnesium, between the mitral and pulmonary valves or between the mitral and tricuspid valves. It is suggested that the accumulation of calcium and phosphorus in the cardiac valve occurs independent of the other cardiac valves.  相似文献   

10.
11.
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria.  相似文献   

12.
Cardiac troponin C belongs to the EF-hand superfamily of calcium-binding proteins and plays an essential role in the regulation of muscle contraction and relaxation. To follow calcium binding and exchange with the regulatory N-terminal domain (N-domain) of human cardiac troponin C, we substituted Phe at position 27 with Trp, making a fluorescent cardiac troponin C(F27W). Trp(27) accurately reported the kinetics of calcium association and dissociation of the N-domain of cardiac troponin C(F27W). To sensitize the N-domain of cardiac troponin C(F27W) to calcium, we individually substituted the hydrophobic residues Phe(20), Val(44), Met(45), Leu(48), and Met(81) with polar Gln. These mutations were designed to increase the calcium affinity of the N-domain of cardiac troponin C by facilitating the movement of helices B and C (BC unit) away from helices N, A, and D (NAD unit). As anticipated, these selected hydrophobic residue substitutions increased the calcium affinity of the regulatory domain of cardiac troponin C(F27W) approximately 2.1-15.2-fold. Surprisingly, the increased calcium affinity caused by the hydrophobic residue substitutions was largely due to faster calcium association rates (2.6-8.7-fold faster) rather than to slower calcium dissociation rates (1.2-2.9-fold slower). The regulatory N-domains of cardiac troponin C(F27W) and its mutants were also able to bind magnesium competitively and with physiologically relevant affinities (1.2-2.7 mm). The design of calcium-sensitizing cardiac troponin C mutants presented in this work enhances the understanding of how to control cation binding properties of EF-hand proteins and ultimately their structure and physiological function.  相似文献   

13.
We have shown previously that burn trauma produces significant cardiac dysfunction, which is first evident 8 h postburn and is maximal 24 h postburn. Because calcium handling by the cardiomyocyte is essential for cardiac function, one mechanism by which burn injury may cause cardiac abnormalities is via calcium dyshomeostasis. We hypothesized that major burn injury alters cardiomyocyte calcium handling through changes in calcium transporter expression. Sprague-Dawley rats were given either burn injury or no burn injury (controls). Cardiomyocyte intracellular calcium and sodium were quantified at various times postburn by fura 2-AM or sodium-binding benzofuran isophthalate fluorescent indicators, respectively. In addition, hearts freeze-clamped at various times postburn (2, 4, 8, and 24 h) were used for Western blot analysis using antibodies against the sarcoplasmic reticulum calcium-ATPase (SERCA), the L-type calcium-channel, the ryanodine receptor, the sodium/calcium exchanger, or the sodium-potassium-ATPase. Intracellular calcium levels were elevated significantly 8-24 h postburn, and intracellular sodium was increased significantly 4 through 24 h postburn. Expression of SERCA was significantly reduced 1-8 h postburn, whereas L-type calcium-channel expression was diminished 1 and 2 h postburn (P < 0.05) but returned toward control levels 4 h postburn. Ryanodine receptor protein was significantly reduced at 1 and 2 h postburn, returning to baseline by 4 h postburn. Sodium/calcium exchanger expression was significantly elevated 2 h postburn but was significantly reduced 24 h postburn. An increase in sodium-potassium-ATPase expression occurred 2-24 h postburn. These data confirm that burn trauma alters calcium transporter expression, likely contributing to cardiomyocyte calcium loading and cardiac contractile dysfunction.  相似文献   

14.
We have proposed that the naturally occurring alkaloid ryanodine reduces the release of calcium from the sarcoplasmic reticulum (SR) in cardiac muscle cells. We summarize the data that support this hypothesis and discuss possible mechanisms for 1) the differences in sensitivity to ryanodine displayed by intact skeletal and cardiac muscle preparations vs. that of skinned cardiac cells and isolated SR membranes, 2) the ability of ryanodine to cause either an increase or a decrease in calcium accumulation by isolated skeletal muscle SR vesicles depending on experimental conditions, and 3) the positive inotropic effects produced by ryanodine in cardiac muscle preparations under certain experimental circumstances. In addition, we also show how ryanodine can be used to evaluate the contributions made by SR calcium release to cellular events in striated muscle.  相似文献   

15.
1. Ca-ATPase activity, calcium-binding proteins and Concanavalin-A-bound glycoproteins of sarcolemma and sarcoplasmic reticulum were compared in mouse cardiac and skeletal muscles. 2. Ca-ATPase activity and calsequestrin were quite reduced in cardiac muscle, and the quantity of calcium bound to these two proteins was practically negligible, contrary to what was observed with skeletal muscle. In addition, the quantity of lipid bound calcium was not greater in cardiac muscle than in skeletal muscle. 3. Certain proteins seemed exclusively specific for skeletal muscle, including a 30,000 mol. wt glycoprotein which was totally absent in cardiac muscle sarcolemma.  相似文献   

16.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

17.
The calcium activation of the ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity of cardiac actomyosin reconstituted from bovine cardiac myosin and a complex of actin-tropomyosin-troponin extracted from bovine cardiac muscle at 37 degrees C was studied and compared with similar proteins from rabbit fast skeletal muscle. The proteins of the actin complex were identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Half-maximal activation of the cardiac actomyosin was seen at a calcium concentration of 1.2 +/- 0.002 (S.E. of mean) muM. A hybridized reconstituted actomyosin made with cardiac myosin and the actin-tropomyosin-troponin complex extracted from rabbit skeletal muscle was also activated by calcium but the half-maximal value was shifted to 0.65 +/- 0.02 (S.E. of mean) muM Ca2+. Homologous rabbit skeletal actomyosin showed half-maximal activation at 0.90 +/- 0.01 (S.E. of mean) muM Ca2+ and the value for a hybridized actomyosin made with rabbit skeletal myosin and the actin-complex from cardiac muscle was found at 1.4 +/- 0.03 (S.E. of mean) muM Ca2+ concentration. Kinetic analysis of the Ca2+ activated ATPase activity of reconstituted bovine cardiac actomyosin indicated some degree of cooperativity with respect to calcium. Double reciprocal plots of reconstituted actomyosins made with bovine cardiac actin complex were curvilinear and significantly different than those of reconstituted actomyosins made with the rabbit fast skeletal actin complex. The Ca2+-dependent cooperativity was of a mixed type as determined from Hill plots for homologous reconstituted bovine cardiac and rabbit fast skeletal actomyosin. The results show that cooperative interactions in reconstituted actomyosins were greater when the actin-tropomyosin-troponin complex was derived from cardiac than skeletal muscle.  相似文献   

18.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

19.
Calcium controls the level of muscle activation via interactions with the troponin complex. Replacement of the native, skeletal calcium-binding subunit of troponin, troponin C, with mixtures of functional cardiac and mutant cardiac troponin C insensitive to calcium and permanently inactive provides a novel method to alter the number of myosin cross-bridges capable of binding to the actin filament. Extraction of skeletal troponin C and replacement with functional and mutant cardiac troponin C were used to evaluate the relationship between the extent of thin filament activation (fractional calcium binding), isometric force, and the rate of force generation in muscle fibers independent of the calcium concentration. The experiments showed a direct, linear relationship between force and the number of cross-bridges attaching to the thin filament. Further, above 35% maximal isometric activation, following partial replacement with mixtures of cardiac and mutant troponin C, the rate of force generation was independent of the number of actin sites available for cross-bridge interaction at saturating calcium concentrations. This contrasts with the marked decrease in the rate of force generation when force was reduced by decreasing the calcium concentration. The results are consistent with hypotheses proposing that calcium controls the transition between weakly and strongly bound cross-bridge states.  相似文献   

20.
Normal cardiac muscle contraction occurs in response to a rapid rise followed by a slower decay in intracellular calcium concentration. When cardiac muscle cells are loaded with calcium, an intracellular store releases calcium into the cytosol by the process of calcium-induced calcium release (CICR). This release contributes to the rise in intracellular calcium which in turn triggers contraction. We use two qualitative piecewise linear reaction-diffusion models of this behaviour to investigate the speed, stability and waveform of plane waves using singular perturbation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号