首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.  相似文献   

2.
Mice with a keratinocyte-specific deletion of Tak1 exhibit severe skin inflammation due to hypersensitivity to tumor necrosis factor (TNF) killing. Here we have examined the mechanisms underlying this hypersensitivity. We found that TAK1 deficiency up-regulates reactive oxygen species (ROS) resulting in cell death upon TNF or oxidative stress challenge. Because blockade of NF-kappaB did not increase ROS or did not sensitize cells to oxidative stress in keratinocytes TAK1 regulates ROS mainly through the mechanisms other than those mediated by NF-kappaB. We found that c-Jun was decreased in TAK1-deficient keratinocytes and that ectopic expression of c-Jun could partially inhibit TNF-induced increase of ROS and cell death. Finally, we show that, in an in vivo setting, the antioxidant treatment could reduce an inflammatory condition in keratinocyte-specific Tak1 deletion mice. Thus, TAK1 regulates ROS partially through c-Jun, which is important for preventing ROS-induced skin inflammation.  相似文献   

3.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

4.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

5.
《Autophagy》2013,9(4):603-617
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.  相似文献   

6.
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.  相似文献   

7.
Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-l-cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.  相似文献   

8.
Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin , collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl--cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 μ safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment.  相似文献   

9.
Cells typically die by either apoptosis or necrosis. However, the consequences of apoptosis and necrosis are quite different for a whole organism. In the case of apoptosis, the cell content remains packed in the apoptotic bodies that are removed by macrophages, and thereby inflammation does not occur; during necrosis, the cell membrane is ruptured, and the cytosolic constituents are released into the extracellular space provoking inflammation. Recently, inflammation and necrosis have been suggested to promote tumor growth. We investigated the molecular mechanism underlying cell death in response to glucose depletion (GD), a common characteristic of the tumor microenvironment. GD induced necrosis through production of reactive oxygen species (ROS) in A549 lung carcinoma cells. Inhibition of ROS production by N-acetyl-L-cysteine and catalase prevented necrosis and switched the cell death mode to apoptosis that depends on mitochondrial death pathway involving caspase-9 and caspase-3 activation, indicating a critical role of ROS in determination of GD-induced cell death mode. We demonstrate that protein kinase C-dependent extracellular regulated kinase 1/2 (ERK1/2) activation also switched GD-induced necrosis to apoptosis through inhibition of ROS production possibly by inducing manganese superoxide dismutase (SOD) expression and by preventing GD-induced degradation of copper zinc SOD. Thus, these results suggest that GD-induced cell death mode is determined by the protein kinase C/ERK1/2 signal pathway that regulates MnSOD and CuZnSOD and that these antioxidants may exert their known tumor suppressive activities by inducing necrosis-to-apoptosis switch.  相似文献   

10.
Serum deprivation-triggered increases in reactive oxygen species (ROS) are known to induce apoptotic cell death. However, the mechanism by which serum deprivation causes ROS production is not known. Since mitochondria are the main source of ROS and since mitochondrial ROS modulator 1 (Romo1) is involved in ROS production, we sought to determine if serum deprivation triggered ROS production through Romo1. To examine the relationship between Romo1 and the serum deprivation-triggered increase in ROS, we transfected Romo1 siRNA into various cell lines and looked for inhibition of mitochondrial ROS generation. Romo1 knockdown by Romo1 siRNA blocked the mitochondrial ROS production caused by serum deprivation, which originates in the mitochondrial electron transport chain. We also found that Romo1 knockdown inhibited serum deprivation-induced apoptosis. These findings suggest that Romo1-derived ROS play an important role in apoptotic cell death triggered by withdrawal of cell survival factors.  相似文献   

11.
The mechanism of action of clofazimine (CFZ), an antimycobacterial drug with a long history, is not well understood. The present study describes a redox cycling pathway that involves the enzymatic reduction of CFZ by NDH-2, the primary respiratory chain NADH:quinone oxidoreductase of mycobacteria and nonenzymatic oxidation of reduced CFZ by O(2) yielding CFZ and reactive oxygen species (ROS). This pathway was demonstrated using isolated membranes and purified recombinant NDH-2. The reduction and oxidation of CFZ was measured spectrally, and the production of ROS was measured using a coupled assay system with Amplex Red. Supporting the ROS-based killing mechanism, bacteria grown in the presence of antioxidants are more resistant to CFZ. CFZ-mediated increase in NADH oxidation and ROS production were not observed in membranes from three different Gram-negative bacteria but was observed in Staphylococcus aureus and Saccharomyces cerevisiae, which is consistent with the known antimicrobial specificity of CFZ. A more soluble analog of CFZ, KS6, was synthesized and was shown to have the same activities as CFZ. These studies describe a pathway for a continuous and high rate of reactive oxygen species production in Mycobacterium smegmatis treated with CFZ and a CFZ analog as well as evidence that cell death produced by these agents are related to the production of these radical species.  相似文献   

12.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

13.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

14.
The response of three human leukemia cell lines, the proliferative promonocyte THP-1 and the promyeloid HL60 cells and the non-proliferative phorbol ester-treated HL60 cells (HL60/PMA), to oxidative stress induced by tert-butylhydroperoxide (t-BHP) treatment was analyzed by fluorescence microplate assay, anti-oxidant enzyme activity measurements, high performance liquid chromatography, yopro-1/PI incorporation, poly (ADP-ribose) polymerase and caspase 3 cleavages. After t-BHP treatment, the non-proliferative HL60/PMA cells exhibited a weak increase in reactive oxygen species (ROS) production, a better preservation of thiol content, a decrease of glutathione peroxidase activity and a high ability to undergo necrosis rather than apoptosis. Submitted to the same treatment, the proliferative HL60 and THP-1 cells exhibited a high increase of ROS production, a moderate thiol depletion and a high percentage of apoptosis. Under thiol depleting conditions, the oxidative treatment of the HL60/PMA cells resulted in a high ROS production that reached levels similar to those of the two other cell lines and in cell death mainly by necrosis. In conclusion, these results that show proliferative phenotype is essential for cell response towards oxidative stress, are of particular interest in chemotherapy involving an oxidative mechanism.  相似文献   

15.
Signals generated by the extracellular matrix (ECM) promote cell survival. We have shown that chondrocytes detached from their native ECM and plated without serum at low density on poly-L-lysine undergo significant cell death that is associated with the production of reactive oxygen species (ROS). No cell death or ROS production was observed when cells were plated on fibronectin under the same conditions. Cell death on poly-L-lysine could be completely inhibited with the addition of either antioxidants or inhibitors of specific protein kinase C (PKC) isoforms including PKC-I. PKC-I was noted to translocate from the cytosol to the particulate membrane after plating on poly-L-lysine, and this translocation was inhibited by the addition of an antioxidant. Time-course analyses implicated endogenous ROS production as a secondary messenger leading to PKC-I activation and subsequent chondrocyte cell death. Cell survival on poly-L-lysine was significantly improved in the presence of oligomycin or DIDS, suggesting that ROS production occurred via complex V of the electron transport chain of the mitochondria and that ROS were released to the cytosol via voltage-dependent anion channels. Together, these results represent a novel mechanism by which ROS can initiate cell death through the activation of PKC-I. articular cartilage; osteoarthritis; cell signaling; fibronectin  相似文献   

16.
Park J  Gu Y  Lee Y  Yang Z  Lee Y 《Plant physiology》2004,135(1):129-136
Phosphatidic acid (PA) level increases during various stress conditions. However, the physiological roles of this lipid in stress response remain largely unknown. In this study, we report that PA induced leaf cell death and elevated the levels of reactive oxygen species (ROS) in the whole leaf and single cells. To further elucidate the mechanism of PA-induced cell death, we then examined whether Rho-related small G protein (ROP) 2, which enhanced ROS production in an in vitro assay, is involved in PA-induced ROS production and cell death. In response to PA, transgenic leaves of Arabidopsis expressing a constitutively active rop2 mutant exhibited earlier cell death and higher levels of ROS than wild type (WT), whereas those expressing a dominant-negative rop2 mutant exhibited later cell death and lower ROS. However, in the absence of exogenous PA, no spontaneous cell death or elevated ROS was observed in constitutively active rop2 plants, suggesting that the activation of ROP GTPase alone is insufficient to activate the ROP-mediated ROS generation pathway. These results suggest that PA modulates an additional factor required for the active ROP-mediated ROS generation pathway. Therefore, PA may be an important regulator of ROP-regulated ROS generation and the cell death process during various stress and defense responses of plants.  相似文献   

17.
Oxyl radicals, redox-sensitive signalling cascades and antioxidants   总被引:6,自引:0,他引:6  
Oxidative stress is an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples. A particularly destructive aspect of oxidative stress is the production of reactive oxygen species (ROS), which include free radicals and peroxides. Some of the less reactive of these species can be converted by oxidoreduction reactions with transition metals into more aggressive radical species that can cause extensive cellular damage. In animals, ROS may influence cell proliferation, cell death (either apoptosis or necrosis) and the expression of genes, and may be involved in the activation of several signalling pathways, activating cell signalling cascades, such as those involving mitogen-activated protein kinases. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. The cellular redox environment is preserved by enzymes and antioxidants that maintain the reduced state through a constant input of metabolic energy. This review summarizes current studies that have been regarding the production of ROS and the general redox-sensitive targets of cell signalling cascades.  相似文献   

18.
The mechanism of alpha-tocopheryl succinate (TS) cytoprotection against mitochondria-derived oxidative stress was investigated. Incubation of isolated rat hepatocytes with ethyl methanesulfonate (EMS), a mitochondrial alkylating toxicant caused mitochondrial dysfunction and necrotic cell death that was dependent on the production of reactive oxygen species (ROS) and lipid peroxidation. Mitochondria isolated from these cells showed a 3-fold increase in lipid hydroperoxides and a selective depletion of alpha-tocopherol (T), which preceded cell death. The pretreatment of hepatocytes with TS dramatically enriched cells and mitochondria with alpha-tocopherol and provided these membranes with complete protection against EMS-induced oxidative damage. TS pretreatment suppressed EMS-induced cellular ROS production, generated from mitochondrial complex I and III sites. In addition, the treatment with either rotenone (ROT, a complex I inhibitor) or antimycin A (AA, a complex III inhibitor) potentiated EMS-induced lipid peroxidation and necrotic cell death which were again completely prevented by TS treatment. Surprisingly, TS did not protect hepatocytes against thenoyltrifluoroacetone (TTFA), a complex II inhibitor-induced enhancement of EMS-induced toxic oxidative damage. We conclude that the inhibition of mitochondrial ROS production and lipid peroxidation by T released from TS, are the critical events responsible for TS-mediated cytoprotection against toxic oxidative stress derived from both mitochondrial complexes I and III. Our findings suggest that TS treatment may prove useful in combating diseases associated with mitochondrial-derived oxidative stress.  相似文献   

19.
Fumonisin B(1) (FB(1)) is a neurodegenerative mycotoxin produced by Fusarium verticiloides mould that contaminates maize worldwide. FB(1) toxicity has been connected with deregulation of sphingolipid metabolism, but the mechanism of cytotoxicity remains controversial. In cell cultures of rat primary astrocytes and human neuroblastoma (SH-SY5Y), we found that FB(1) inhibits mitochondrial complex I, which leads to a decrease in the rate of mitochondrial and cellular respiration, depolarisation of the mitochondrial membrane, induction of reactive oxygen species (ROS) production in mitochondria and deregulation of calcium signalling. Despite the increase in ROS production, the intracellular level of glutathione (GSH) was significantly increased. After 24h of FB(1) exposure, no cell death was observed. Thus, mitochondria appear to be the primary target of FB(1), which leads to sustained deregulation of calcium homeostasis and presumably to cell death.  相似文献   

20.
Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of 'programmed necrosis'. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号