首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we analyse the potential for using structural knowledge to improve the detection of the DNA-binding helix–turn–helix (HTH) motif from sequence. Starting from a set of DNA-binding protein structures that include a functional HTH motif and have no apparent sequence similarity to each other, two different libraries of hidden Markov models (HMMs) were built. One library included sequence models of whole DNA-binding domains, which incorporate the HTH motif, the second library included shorter models of ‘partial’ domains, representing only the fraction of the domain that corresponds to the functionally relevant HTH motif itself. The libraries were scanned against a dataset of protein sequences, some containing the HTH motifs, others not. HMM predictions were compared with the results obtained from a previously published structure-based method and subsequently combined with it. The combined method proved more effective than either of the single-featured approaches, showing that information carried by motif sequences and motif structures are to some extent complementary and can successfully be used together for the detection of DNA-binding HTHs in proteins of unknown function.  相似文献   

2.
This work describes a method for predicting DNA binding function from structure using 3-dimensional templates. Proteins that bind DNA using small contiguous helix–turn–helix (HTH) motifs comprise a significant number of all DNA-binding proteins. A structural template library of seven HTH motifs has been created from non-homologous DNA-binding proteins in the Protein Data Bank. The templates were used to scan complete protein structures using an algorithm that calculated the root mean squared deviation (rmsd) for the optimal superposition of each template on each structure, based on Cα backbone coordinates. Distributions of rmsd values for known HTH-containing proteins (true hits) and non-HTH proteins (false hits) were calculated. A threshold value of 1.6 Å rmsd was selected that gave a true hit rate of 88.4% and a false positive rate of 0.7%. The false positive rate was further reduced to 0.5% by introducing an accessible surface area threshold value of 990 Å2 per HTH motif. The template library and the validated thresholds were used to make predictions for target proteins from a structural genomics project.  相似文献   

3.
Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit.  相似文献   

4.
Nucleotide excision repair in Escherichia coli involves formation of the UvrB–DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB–DNA complex. Both stable and unstable UvrB–DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB–DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix–hairpin–helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5′ incision on a substrate containing a (cis-Pt)·GG adduct, but not for 3′ incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3′ and/or 5′ incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system.  相似文献   

5.
Roy S  Sahu A  Adhya S 《Gene》2002,285(1-2):169-173
A gene regulatory protein with helix-turn-helix (HTH) DNA-binding motif, GalS contains a functional operator within the DNA sequences encoding the HTH region (Nature 369 (1994) 314). We searched for operator-like sequences within the DNA sequences encoding the DNA binding motifs of other regulatory proteins. Five such proteins, DeoR, CytR, LRP, LuxR and PurR, were found to have actual operator or operator-like sequences in the DNA sequences encoding the DNA-binding motif. Except DeoR, all of them including GalS, are known to be auto-regulated. Auto-regulation in case of DeoR has not been investigated. Seven other proteins containing a HTH motif, do not have operator-like sequences in the DNA sequences encoding the HTH motif; none of them, except MerR, are known to be auto-regulated. The DNA binding proteins may have evolved from a common ancestor containing a DNA binding site within its gene segment that encodes the DNA-binding motif to facilitate auto-regulation. We have discussed current evidence for monophyletic or polyphyletic origin of such sequences.  相似文献   

6.
The C-terminal domain of the Escherichia coli Ada protein (Ada-C) aids in the maintenance of genomic integrity by efficiently repairing pre-mutagenic O6-alkylguanine lesions in DNA. Structural and thermodynamic studies were carried out to obtain a model of the DNA-binding process. Nuclear magnetic resonance (NMR) studies map the DNA-binding site to helix 5, and a loop region (residues 151–160) which form the recognition helix and the ‘wing’ of a helix–turn–wing motif, respectively. The NMR data also suggest the absence of a large conformational change in the protein upon binding to DNA. Hence, an O6-methylguanine (O6meG) lesion would be inaccessible to active site nucleophile Cys146 if the modified base remained stacked within the DNA duplex. The experimentally determined DNA-binding face of Ada-C was used in combination with homology modelling, based on the catabolite activator protein, and the accepted base-flipping mechanism, to construct a model of how Ada-C binds to DNA in a productive manner. To complement the structural studies, thermodynamic data were obtained which demonstrate that binding to unmethylated DNA was entropically driven, whilst the demethylation reaction provoked an exothermic heat change. Methylation of Cys146 leads to a loss of structural integrity of the DNA-binding subdomain.  相似文献   

7.
8.
Structural basis of replication origin recognition by the DnaA protein   总被引:7,自引:0,他引:7  
Escherichia coli DnaA binds to 9 bp sequences (DnaA boxes) in the replication origin, oriC, to form a complex initiating chromosomal DNA replication. In the present study, we determined the crystal structure of its DNA-binding domain (domain IV) complexed with a DnaA box at 2.1 Å resolution. DnaA domain IV contains a helix–turn–helix motif for DNA binding. One helix and a loop of the helix– turn–helix motif are inserted into the major groove and 5 bp (3′ two-thirds of the DnaA box sequence) are recognized through base-specific hydrogen bonds and van der Waals contacts with the C5-methyl groups of thymines. In the minor groove, Arg399, located in the loop adjacent to the motif, recognizes three more base pairs (5′ one-third of the DnaA box sequence) by base-specific hydrogen bonds. DNA bending by ~28° was also observed in the complex. These base-specific interactions explain how DnaA exhibits higher affinity for the strong DnaA boxes (R1, R2 and R4) than the weak DnaA boxes (R3 and M) in the replication origin.  相似文献   

9.
10.
One, two or four copies of the 'helix-hairpin-helix' (HhH) DNA-binding motif are predicted to occur in 14 homologous families of proteins. The predicted DNA-binding function of this motif is shown to be consistent with the crystallographic structure of rat polymerase beta, complexed with DNA template-primer [Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. and Kraut, J. (1994) Science 264, 1891-1903] and with biochemical data. Five crystal structures of predicted HhH motifs are currently known: two from rat pol beta and one each in endonuclease III, AlkA and the 5' nuclease domain of Taq pol I. These motifs are more structurally similar to each other than to any other structure in current databases, including helix-turn-helix motifs. The clustering of the five HhH structures separately from other bi-helical structures in searches indicates that all members of the 14 families of proteins described herein possess similar HhH structures. By analogy with the rat pol beta structure, it is suggested that each of these HhH motifs bind DNA in a non-sequence-specific manner, via the formation of hydrogen bonds between protein backbone nitrogens and DNA phosphate groups. This type of interaction contrasts with the sequence-specific interactions of other motifs, including helix-turn-helix structures. Additional evidence is provided that alphaherpesvirus virion host shutoff proteins are members of the polymerase I 5'-nuclease and FEN1-like endonuclease gene family, and that a novel HhH-containing DNA-binding domain occurs in the kinesin-like molecule nod, and in other proteins such as cnjB, emb-5 and SPT6.  相似文献   

11.
The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (∼10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.  相似文献   

12.
The DNA-binding domain of the oncoprotein Myb comprises three imperfect repeats, R1, R2 and R3. Only R2 and R3 are required for sequence-specific DNA-binding. Both are assumed to contain helix-turn-helix (HTH)-related motifs, but multidimensional heteronuclear NMR spectroscopy revealed a disordered structure in R2 where the second HTH helix was predicted [Jamin et al. (1993) Eur. J. Biochem., 216, 147-154]. We propose that the disordered region folds into a 'recognition' helix and generates a full HTH-related motif upon binding to DNA. This would move Cys43 into the hydrophobic core of R2. We observed that Cys43 was accessible to N-ethylmaleimide alkylation in the free protein, but inaccessible in the DNA complex. Mutant proteins with charged (C43D) or polar (C43S) side chains in position 43 bound DNA with reduced affinity, while hydrophobic replacements (C43A, C43V and C43I) gave unaltered or improved DNA-binding. Specific DNA-binding enhanced protease resistance dramatically. Fluorescence emission spectra and quenching experiments supported a DNA-induced conformational change. Moreover, reversible oxidation of Cys43 had an effect similar to the inactivating C43D mutation. The highly oxidizable Cys43 could function as a molecular sensor for a redox regulatory mechanism turning specific DNA-binding on or off by controlling the DNA-induced conformational change in R2.  相似文献   

13.
14.
15.
The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses.  相似文献   

16.
Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction.  相似文献   

17.
This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. In this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.  相似文献   

18.
19.
Basic helix–loop–helix (bHLH) proteins are among the most well studied and functionally important regulatory proteins in all eukaryotes. The HLH domain dictates dimerization to create homo- and heterodimers. Dimerization juxtaposes the basic regions of the two monomers to create a DNA interaction surface that recognizes the consensus sequence called the E-box, 5′-CANNTG-3′. Several bHLH proteins have been identified in the yeast Saccharomyces cerevisiae using traditional genetic methodologies. These proteins regulate diverse biological pathways. The completed sequence of the yeast genome, combined with novel methodologies allowing whole-genome expression studies, now offers a unique opportunity to study the function of these bHLH proteins. It is the purpose of this review to summarize the current knowledge of bHLH protein function in yeast.  相似文献   

20.
Genome segregation is a vital process in all organisms. Chromosome partitioning remains obscure in Archaea, the third domain of life. Here, we investigated the SegAB system from Sulfolobus solfataricus. SegA is a ParA Walker-type ATPase and SegB is a site-specific DNA-binding protein. We determined the structures of both proteins and those of SegA–DNA and SegB–DNA complexes. The SegA structure revealed an atypical, novel non-sandwich dimer that binds DNA either in the presence or in the absence of ATP. The SegB structure disclosed a ribbon–helix–helix motif through which the protein binds DNA site specifically. The association of multiple interacting SegB dimers with the DNA results in a higher order chromatin-like structure. The unstructured SegB N-terminus plays an essential catalytic role in stimulating SegA ATPase activity and an architectural regulatory role in segrosome (SegA–SegB–DNA) formation. Electron microscopy results also provide a compact ring-like segrosome structure related to chromosome organization. These findings contribute a novel mechanistic perspective on archaeal chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号