首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A comprehensive study has been undertaken on the subcellular and subsynaptosomal distribution of a number of markers for subcellular organelles in preparations from rat brain. Although the activity of most enzymatic markers was decreased by freezing and storage at - 70oC, no significant changes were noted in the distribution of these activities. This demonstrates that contamination of brain fractions by subcellular organelles can be accurately assessed after freezing and thawing. A marked discrepancy was noted between the distribution of three putative markers for endoplasmic reticulum. CDP-choline-diacylglycerol cholinephosphotransferase (EC 2.7.8.1) activity was mainly limited to the microsomal fraction and was present to a lesser extent in the synaptosomal fraction than the other putative markers for endoplasmic reticulum. Estrone sulfate sulfohydrolase (EC 3.1.6.2) activity demonstrated a bimodal distribution between the crude nuclear and microsomal fractions. However, considerable activity was associated with the synaptosomal fraction. NADPH-cytochrome c reductase (EC 2.3.1.15) activity sedimented in the microsomal and the synaptosomal fractions. Calculations based on the relative specific activities of the microsomal and synaptic plasma membrane fraction indicated that the contamination of the synaptic plasma membranes by endoplasmic reticulum was 44.5% (NADPH-cytochrome c reductase), 38.0% (estrone sulfatase) and 9.0% (cholinephosphotransferase). Since it is believed that virtually all of the synthesis of phosphatidylcholine by cholinephosphotransferase occurs in the neuronal and glial cell bodies, it was concluded that cholinephosphotransferase is a satisfactory marker for the endoplasmic reticulum derived from these sources. The results suggest that NADPH-cytochrome c reductase and estrone sulfatase may be present in the smooth endoplasmic reticulum system responsible for the fast transport of macromolecules along the axon to the nerve endings as well as in the endoplasmic reticulum of the cell bodies. The possible relation between that portion of the smooth endoplasmic reticulum involved in fast axonal transport and the GERL (Golgi, Endoplasmic Reticulum, Lysosomes) complex discovered by Novikoff and his coworkers (Novikoff , 1976) is discussed.  相似文献   

2.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

3.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

4.
Labeling and isolation of plasma membranes from corn leaf protoplasts   总被引:24,自引:19,他引:5       下载免费PDF全文
A plasma membrane-enriched fraction has been isolated from corn leaf mesophyll protoplasts and its identity confirmed with the aid of an external label, diazotized [125I]iodosulfanilic acid. Gentle cell disruption enabled internal organelles to be maintained intact and thus facilitated separation from the plasma membrane. The plasma membrane-enriched fraction was devoid of chloroplast or mitochondrial markers, whereas markers for the endoplasmic reticulum and golgi indicated minimal contamination. The highly enriched plasma membrane fraction contained a Mg2+-dependent, K+-stimulated ATPase with a pH optimum near neutrality. The position of the membranes on sucrose density gradients indicates that the plasma membranes have characteristics similar to other plasma membrane fractions.  相似文献   

5.
L. Taiz  M. Murry  D. G. Robinson 《Planta》1983,158(6):534-539
In homogenates of stem sections from etiolated pea (Pisum sativum L.) seedlings, secretory vesicles can be separated from Golgi-apparatus cisternae by rate-zonal centrifugation in renografin gradients. Optically, two bands of turbidity are observed, the uppermost containing the secretory vesicles and the lower one the Golgi-apparatus cisternae. The absence of glutaraldehyde in the homogenizing medium has allowed the effective characterization of marker-enzyme activities. Golgi-apparatus cisternae have been recognized by the presence of inosine-diphosphatase and glucan-synthase I activities as well as by electron microscopy. In contrast, although secretory vesicles also bear inosine diphosphatase they do not appear to possess glucan-synthase activity. Three plasma-membrane markers, NPA-binding, glucan synthase II, and KCl,Mg2+-adenosine triphosphatase (pH 6.5), were not detected in secretory vesicles. Pulse-chase experiments with [3H]glucose support our designation of secretory vesicles and Golgi-cisternal fractions.Abbreviations ER endoplasmic reticulum - GSI, GSII glucan, synthase I, II, respectively - IDPase inosine diphosphatase - PM plasma membrane - SV(s) secretory vesicle(s)  相似文献   

6.
Procedures to isolate plasma membrane, Golgi apparatus, and endoplasmic reticulum from a single homogenate of mouse liver are described. Fractions contain low levels of contaminating membranes as determined from morphometry and analyses of marker enzymes. The method requires only 2–3 gm of liver as starting material and yields approximately 0.7, 0.7, and 0.5 mg protein/gm liver, respectively, for endoplasmic reticulum, Golgi apparatus, and plasma membrane. Golgi apparatus fractions show high levels of galactosyltransferase activity and consist of cisternal stacks and associated secretory vesicles and tubules. Endoplasmic reticulum fractions are enriched in both glucose-6-phosphatase and nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-cytochrome c reductase and contain membrane vesicles with attached ribosomes. K+-stimulated p-nitrophenyl phosphatase and (Na+ K+) adenosine triphosphatase activity are enriched in the plasma membrane fraction. This fraction consists of membrane sheets, many with junctional complexes, and bile canaliculi that are representative of the total hepatocyte plasma membrane. The fractionation procedure is designed to utilize small amounts of tissue (e.g., with liver slices), to reduce the total time required for fractionation, and to permit comparisons of constituents of plasma membrane, Golgi apparatus, and endoplasmic reticulum prepared from the same starting homogenates.  相似文献   

7.
Summary Membranes from etiolated maize seedlings were isolated using sucrose gradients for in vitro studies of polysaccharide synthesis. Following downward centrifugation, flotation centrifugation improved the purity of membrane fractions, in particular the Golgi apparatus. Based on naphthylphthalamic acid binding to plasma membrane and inosine-5-diphosphatase activity in Golgi apparatus, flotation centrifugation removed about 70% of the plasma membrane which cosedimented with the Golgi apparatus in downward centrifugation. The addition of chelators during flotation centrifugation allowed separation of the Golgi apparatus from endoplasmic reticulum, as indicated by NADH cytochromec reductase activity. Glucan and xylan synthase activities were measured as the radioactivity incorporated from either UDP-14C-glucose or UDP-14C-xylose into 80% ethanol insoluble materials. Glucan synthase activity at a substrate concentration of 1 mM UDP-glucose without CaCl2 was greatest in fractions enriched in Golgi apparatus, but in the presence of 3 mM CaCl2 the activity was greatest in fractions enriched in plasma membrane. Glucan synthase activity at a substrate concentration of 10M UDP-glucose in the presence of 3 mM MnCl2 was greatest in fractions enriched in plasma membrane, but was also high in fractions enriched in Golgi apparatus. Xylan synthase activity, at a substrate concentration of 1 M UDP-xylose in the presence of 3 mM MnCl2, was greatest in fractions enriched in Golgi apparatus. To further characterize these synthase reactions, the glycosyl linkages of the products formed were analyzed with a gas chromatograph coupled to a radiogas proportional counter. With the substrate, UDP-14C-glucose, and fractions enriched in Golgi apparatus, both (13)- and (14)-radioactive glucosyl linkages were formed, whereas the main linkage formed by fractions enriched in plasma membrane was (13)-glucosyl. With the substrate, UDP-14C-xylose, mostly (14)-xylosyl and some terminal-xylosyl linkages were formed by fractions enriched in Golgi apparatus. Only xylan synthase activity copurified with Golgi apparatus and, because plasma membrane lacked this activity, xylan synthase may be used as a reasonable indicator of Golgi apparatus.Abbreviations ATP adenosine-5-triphosphate - CR crude fraction from downward centrifugation - FL purified fraction from flotation centrifugation - GC gas chromatography - GC-RPC gas chromatography-radiogas proportional counting - IDP inosine-5-disphosphate - NPA naphthylphthalamic acid - UDP uridine-5-diphosphate - TEM transmission electron microscopy  相似文献   

8.
The intracellular localization of an endonuclease (nuclease I) in barley aleurone responding to gibberellic acid was investigated by subcellular fractionation and immunocytochemistry with monoclonal and polyclonal antibodies. Organelle separations were performed with aleurone layers and protoplasts; immunefixations were carried out on protoplasts only. Nuclease was detected in fractions from isopycnic sucrose density gradients which were enriched in either endoplasmic reticulum or Golgi apparatus membranes. These two organelles were also labelled by the indirect immunogold method on thin sections. Intensive labelling of protein and developing vacuoles was observed. Therefore, as noted in other plants nuclease in barley is essentially a vacuolar enzyme.  相似文献   

9.
Prostaglandins E1 and E2 are specifically bound by particulate fractions from bovine adrenal medulla. The subcellular localization of these binding sites has been investigated by comparing their distribution in subcellular fractions obtained by differential and gradient centrifugation to those of marker enzymes for various organelles. Prostaglandin E2 binding sites were purified about 16-fold with respect to the homogenate in a fraction which was highly enriched in plasma membranes on the basis of the activities of the marker enzymes acetylcholinesterase and calcium-dependent ATPase, which were both purified by about 12-fold in this fraction. The plasma membrane fraction contained relatively low activities of marker enzymes for mitochondria (monoamine oxidase), lysosomes (acid phosphatase), endoplasmic reticulum (glucose-6-phosphatase), Golgi (galactosyl transferase) and chromaffin granule membranes (dopamine β-hydroxylase). The only other fractions enriched in prostaglandin E2 binding sites were those for the endoplasmic reticulum and the Golgi, in which the binding sites were purified about 4-fold and 7-fold, respectively. This is probably due mainly to contamination with plasma membranes, since calcium-dependent ATPase and acetylcholinesterase were each purified to a similar extent in these two fractions. These data suggest that the high-affinity prostaglandin E2 binding sites of the adrenal medulla are localized primarily on the plasma membranes of the medullary cells.  相似文献   

10.
Michael Tacke  Yi Yang  Martin Steup 《Planta》1991,185(2):220-226
Buffer-extractable proteins from leaves of Spinacia oleracea L. were separated by non-denaturing polyacrylamide gel electrophoresis. Gels were stained for adenosine diphosphoglucose (ADPglucose)-dependent glucan-synthase (GS) activity (EC 2.4.1.21). Three major forms of activity were observed. No staining was detectable when ADPglucose was replaced by an equimolar concentration of either uridine, guanosine or cytosine diphosphoglucose. Two of the three GS forms exhibited both primed and citrate-stimulated unprimed activity whereas one enzyme form was strictly dependent upon the presence of an exogenous glucan. For intracellular localization, mesophyll protoplasts and intact chloroplasts were isolated and their enzyme pattern was compared with that of the leaf extract. Intactness and purity of the chloroplast preparations were ascertained by polarographic measurement of the ferricyanide- or CO2-dependent oxygen evolution, by determination of marker-enzyme activities, and by electrophoretic evaluation of the content of chloroplast- and cytosol-specific glucanphosphorylase forms (EC 2.4.1.1). The three GS forms were present in mesophyll protoplasts. Intact chloroplasts possessed both primer-independent enzyme forms but lacked the primer-dependent one. The latter form was enriched in supernatant fractions of leaf homogenates when the intact chloroplasts had been pelleted by centrifugation. Thus, in spinach-leaf mesophyll cells soluble ADPglucose-dependent GS is located both inside and outside the chloroplast.Abbreviations GS glucan synthase - PAGE polyacrylamide gel electrophoresis This work has been made possible by grants from the Deutsche Forschungsgemeinschaft and from the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen. The authors gratefully acknowledge the generous permission to use the laser densitometer of Professor Dr. W. Barz (Biochemie der Pflanzen, Universität Münster, FRG). They are indebted to Dr. H.-J. Witt (Pflanzenphysiologie, Universität Kassel, FRG) for helpful discussions and to Mr. W. Lamkemeyer for skilfull technical assistance.  相似文献   

11.
Summary Tobacco (Nicotiana tabacum L.) pollen, germinated 4 hours in suspension culture, was labeled with radioactive leucine and fractionated into constituent membranes by the technique of preparative free-flow electrophoresis. Tubes were ruptured by sonication directly into the electrophoresis buffer. Unfortunately, the Golgi apparatus of the rapidly elongating pollen tubes did not survive the sonication step. However, it was possible to obtain useful fractions of endoplasmic reticulum and mitochondria. To obtain Golgi apparatus, glutaraldehyde was added to the homogenization buffer during sonication. Plasma membrane, which accounted for only about 3% of the total membrane of the homogenates as determined by staining with phosphotungstate at low pH, was obtained in insufficient quantity and fraction purity to permit analysis. Results show rapid incorporation of [3H]leucine into endoplasmic reticulum followed by rapid chase out. The half-time for loss of radioactivity from the pollen tube endoplasmic reticulum was about 10 minutes. Concomitant with the loss of radioactivity from endoplasmic reticulum, the Golgi apparatus fraction was labeled reaching a maximum 20 minutes post chase. The findings suggest flow of membranes from endoplasmic reticulum to the Golgi apparatus during pollen tube growth.  相似文献   

12.
Cell homogenates obtained from partially regenerated Saccharomyces cerevisiae protoplasts were fractionated by a procedure using a combination of continuous and discontinuous sucrose gradients, under experimental conditions that minimize possible artifacts due to centrifugation and resuspension. At least five different membranous organelle fractions (plasma membrane, mitochondria, rough endoplasmic reticulum, smooth endoplasmic reticulum-like structures and small-sized particulated structures) were isolated. Subcellular fractions were characterized by assaying established marker enzymes. Radioactive labelled ([U-3H]uracil) ribosomes were also used as a further characterization criterion of the rough endoplasmic reticulum. Comparative SDS-polyacrylamide gel electrophoresis of the protein constituents of the isolated membrane-bound organelles suggest that the polypeptide pattern could also be used as an additional marker for some of these structures. Finally, subcellular distribution of chitin synthase was determined using this fractionation procedure, and two partially zymogenic enzyme pools (one inside the cell associated to particles which sediments at high speed, and the second one associated to the plasma membrane) were found.  相似文献   

13.
D. J. Morré  M. Paulik  D. Nowack 《Protoplasma》1986,132(1-2):110-113
Summary Isolated fractions enriched in transition elements derived from part rough—part smooth regions of endoplasmic reticulum of rat liver respondin vitro to ATP plus a concentrated fraction of cytoplasmic proteins by formation of ca. 60 nm vesicles with nap-like coats resembling those of transition vesicles of the intact cell. Similar vesicles are normally considered to function in the transfer of materials from endoplasmic reticulum to cis elements of the Golgi apparatus.  相似文献   

14.
A plasma membrane-enriched fraction (fraction 1B) has been obtained from rat aortic myocytes grown in primary culture. Plasma membrane markers, 5′-nucleotidase and ouabain-sensitive (Na+ + K+)-ATPase, are enriched 4.1- and 8.7-fold, respectively, in this fraction. Although endoplasmic reticulum marker NADPH-cytochrome c reductase is the most enriched in mitochondrial and heavy sucrose density gradient fractions, substantial enrichment of this marker is also observed in membrane fraction 1. This membrane preparation therefore contains a certain quantity of endoplasmic reticulum. Cytochrome c oxidase is de-enriched by a factor of 0.04 in fraction 1, indicating that it is essentially clear of mitochondrial contamination. Homogenization of aortic media-intima layers using a whole-tissue technique induces greater disruption of mitochondria and subsequent contamination of membrane fractions than does the procedure for cell disruption. Analysis of electrophoretic gels, vesicle density distribution and electron micrographs of enriched membrane fractions provide evidence that plasma membrane enriched from cultured myocytes is less traumatized than comparable fractions obtained from intact tissue. The potential value of such a highly enriched, minimally disrupted plasma membrane preparation is discussed.  相似文献   

15.
Organelles from 10 g phase suspension-cultured sugar cane cellshave been analysed by isopyenic sucrose density gradient centrifugation.The distribution profiles for marker enzymes have allowed therecognition of tonoplast, endoplasmic reticulum, Golgi apparatus,plasma membrane, mitochondrial and microbody fractions. In thissystem the glucan synthases I and II, which have previouslybeen regarded as specific marker enzymes for the Golgi apparatusand plasma membrane respectively, show a two-peak profile inthe gradient. For each glucan synthase the peaks correspondroughly with the positions of the Golgi apparatus and plasmamembrane. Analysis of the in vitro synthesized polymers fromthe glucan synthase assay indicates that a mixed-linked (ß,l 3; ß l 4) glucan is produced by both organelle fractions.Supported by individual observations from other authors we suggestthat, in the case of members of the Gramineae, the allocationof the two glucan synthases to two different membrane fractionsis not possible. Key words: Golgi apparatus, Glucan synthases, Plasma membrane, Sugar cane cells  相似文献   

16.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

17.
Summary Adequate ultrastructural preservation of cells of the green algaTrebouxia aggregata is achieved by immersion freeze fixation using liquid propane followed by freeze substitution and resin embedding at ambient temperature. Despite differential staining of membranes, using this method we have been able to study plasma membrane biogenesis during cellular division. Daughter protoplasts are separated by an ingrowing septum of plasma membrane that extends into the cell from a particular site at the peripheral plasma membrane marked by centrioles. Septum development involves tip growth followed by lateral growth. This growth seems to involve transfer of membrane from an adjacent partially coated reticulum to the septum plasma membrane. The reticulum which extends from nearby Golgi stacks to the area of septum growth is associated with an extensive array of microtubules. After daughter protoplasts are completely separated, each one becomes surrounded by a cell wall which is distinct from the persisting mother wall. The ultrastructural evidence suggests that cells ofT. aggregata are autospores rather than vegetative cells.Abbreviations C centriole - ER endoplasmic reticulum - G Golgi body - MTOC microtubule organizing center - Mt(s) microtubule(s) - N nucleus - P primary septum - PCR partially coated reticulum - PM plasma membrane - Py pyrenoid - S septum  相似文献   

18.
Summary Endoplasmic reticulum, Golgi apparatus, plasma membrane and mitochondria vesicles were isolated from the roots of four-day-old dark-grown soybean [Glycine max (L.) Merr. cv. Wells II] seedlings and characterized by marker enzyme analyses. Glycoproteins of enriched membrane fractions were identified by concanavalin A (con A)-peroxidase staining of polypeptides separated by two-dimensional IEF-SDS-PAGE and transferred to nitrocellulose.Con A bound to many polypeptides in each endomembrane-enriched fraction with several glycopolypeptides common to all fractions. The mitochondria-enriched fraction possessed few glycopolypeptides and those appeared to be highly glycosylated contaminants of endomembrane origin. Comparison of the endomembrane con A-binding patterns revealed changes in relative stain intensity, molecular weight and isoelectric point of several membrane glycopolypeptides suggestive of processing reactions of the endomembrane complex.Abbreviations con A concanavalin A - PM plasma membrane - GA Golgi apparatus - ER endoplasmic reticulum  相似文献   

19.
The callose synthase (UDP-glucose: 1,3-β-d-glucan 3-β-d-glucosyl transferase; EC 2.4.1.34) enzyme (CalS) from pollen tubes of Nicotiana alata Link et Otto is responsible for developmentally regulated deposition of the cell wall polysaccharide callose. Membrane preparations from N. alata pollen tubes grown in liquid culture were fractionated by density-gradient centrifugation. The CalS activity sedimented to the denser regions of the gradient, approximately 1.18 g · ml−1, away from markers for Golgi, endoplasmic reticulum and mitochondria, and into fractions enriched in ATPase activity and in membranes staining with phosphotungstic acid at low pH. This suggests that pollen-tube CalS is localised in the plasma membrane. Callose synthase activity from membranes enriched by downward centrifugation was solubilised with digitonin, which gave a 3- to 4-fold increase in enzyme activity, and the solubilised activity was then enriched a further 10-fold by product entrapment. The complete procedure gave final CalS specific activities up to 1000-fold higher than those of pollen-tube homogenates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that several polypeptides co-fractionated with CalS activity through purification, with a polypeptide of 190 kDa being enriched in product-entrapment pellets. Received: 24 September 1997 / Accepted: 12 November 1997  相似文献   

20.
Summary The distribution of actin on various organelles in a green alga,Trebouxia potteri, was examined by immunoelectron microscopy. Actin was detected on the surface of lysosomes at various stages during the formation of zoospores. The distribution of actin on the surface of lysosomes is discussed in connection with their change in shape at a specific stage during the formation of zoospores. Actin was also detected on the surface of coated vesicles, Golgi vesicles, and the trans Golgi network, while it was not detected on the surfaces of mitochondria, chloroplasts, and Golgi bodies.Abbreviations BSA bovine serum albumin - ER endoplasmic reticulum - PBS phosphate buffered saline - TGN trans Golgi network  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号