首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contents of endogenous free and conjugated polyamines were determined in embryogenic and non-embryogenic leaf regions of Camellia japonica leaf explants, before (day 0), and 20 and 45 days after the induction of direct somatic embryogenesis, to clarify whether or not polyamines are linked to the specific morphogenic responses previously reported in the leaf regions. The analysis was carried out by high-performance liquid chromatography. The results showed that there were no significant differences in the endogenous free and conjugated putrescine (Put), spermidine (Spd) and spermine (Spm) contents between the embryogenic and non-embryogenic leaf regions of the same leaf. Thus, leaf region-specific embryogenic response in C. japonica is not being determined/conditioned by the endogenous levels of Put, Spd and/or Spm. However, soluble and insoluble conjugated Put and soluble conjugated Spd seem to be related to the formation and development of globular embryos.  相似文献   

2.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

3.
Changes in polyamines (PAs) in cells and cultivation media of alfalfa (Medicago sativa L.) and tobacco bright yellow 2 (BY-2) (Nicotiana tabacum L.) cell suspension cultures were studied over their growth cycles. The total content of PAs (both free and conjugated forms) was nearly 10 times higher in alfalfa, with high level of free putrescine (Put) (in exponential growth phase it represented about 65-73% of the intracellular Put pool). In contrast, the high content of soluble Put conjugates was found in tobacco cells (in exponential phase about 70% of the intracellular Put). Marked differences occurred in the amount of PAs excreted into the cultivation medium: alfalfa cells excreted at the first day after inoculation 2117.0, 230.5, 29.0 and 88.0 nmol g(-1) of cell fresh weight (FW) of Put, spermidine (Spd), spermine (Spm) and cadaverine (Cad), respectively, while at the same time tobacco cells excreted only small amount of Put and Spd (12.7 and 2.4 nmol g(-1) FW, respectively). On day 1 the amounts of Put, Spd, Spm and Cad excreted by alfalfa cells represented 21, 38, 12 and 15% of the total pool (intra- plus extra-cellular contents) of Put, Spd, Spm and Cad, respectively. In the course of lag-phase and the beginning of exponential phase the relative contents of extracellular PAs continually decreased (with the exception of Cad). On day 10, the extracellular Put, Spd, Spm and Cad still represented 11.3, 10.9, 2.1 and 27% of their total pools. The extracellular PAs in tobacco cells represented from day 3 only 0.1% from their total pools. The possible role of PA excretion into the cultivation medium in maintenance of intracellular PA contents in the cells of the two cell culture systems, differing markedly in growth rate and PA metabolism is discussed.  相似文献   

4.
In vitro morphogenesis of sweet potato (Ipomoea batatas) shoot explants after cultures in callus initiation medium (CIM) with two sucrose contents and plant regeneration medium (PRM) with three growth regulator combinations for different durations was studied. After 4 weeks, explants on 5 % sucrose CIM had significantly more shoots but similar or lower root fresh mass and callus fresh mass than those on 3 % sucrose CIM subsequent to transfer for 6 weeks on all three PRM. Cultures transferred to growth regulator-free PRM after 4 and 12 weeks on 5 % sucrose CIM formed plants through organogenesis and embryogenesis, respectively. Embryogenic cultures from 4 weeks on CIM + 10 weeks on callus proliferation medium when transferred to PRM without growth regulator for 4 and 8 weeks produced multiple embryos in the prior and both embryos and shoot buds in the later.  相似文献   

5.
We have studied photoperiodic control and the effect of phytochrome photoconversion at the end-of-day (EOD) on polyamine (PA) accumulation in petal explants of Araujia sericifera . Petals from immature flowers were cultured under long (LD) and short (SD) days. Light was provided by Gro-lux fluorescent lamps (90–100 µmol m−2 s−1). Red (R), far red (FR), red followed by far-red (R-FR) and far-red followed by red (FR-R) light treatments were applied daily at the end of the photoperiod. The free and bound putrescine (Put), spermidine (Spd) and spermine (Spm) fractions in petal explants were determined 40 days after the beginning of the culture. We also aimed to clarify the involvement of PA changes by using two inhibitors of PA biosynthesis: D- l -α-difluoromethylarginine (DFMA) and methylglyoxal bis (guanylhydrazone) (MGBG). We found PA accumulation to be under photoperiodic control, and the inhibitory effect of DFMA on this accumulation suggests that arginine decarboxylase (ADC) is the major pathway for Put biosynthesis. Polyamine levels were higher under LD, mainly as a result of the accumulation of free and bound Put. FR-EOD treatment, which dramatically reduced the R : FR ratio after LD, increased the accumulation of PA, mainly as free Put and free and bound Spd. Sequential R-FR and FR-R-EOD treatments strongly increased bound Spd. The concentration of MGBG used increased total PA accumulation, mainly as Put. However, all EOD light treatments dramatically reduced Put accumulation in the presence of MGBG. This may be due to a dual role of FR light in PA accumulation: (1) FR per se stimulates PA production, probably via ADC, and (2) in the presence of MGBG, FR inhibits Put accumulation, probably via ethylene production.  相似文献   

6.
Summary The migration of granulated metrial gland (GMG) cells from cultured explants of metrial gland tissue obtained from mice killed between days 10 and 16 of pregnancy has been studied. GMG cells migrated from all of the explants but more GMG cells were found around explants obtained from mice at day 10 of pregnancy than around explants obtained at later stages of pregnancy. The number of GMG cells found around each explant reached a peak at days 1, 2 or 3 of culture but only a few GMG cells were found around the explants by day 7 of culture.  相似文献   

7.
In the present study, high frequency regeneration has been obtained via de novo direct shoot organogenesis from leaf and internode explants in Murashige and Skoog (MS) basal medium without any phytohormone supplementation in Bacopa monnieri, an indigenous traditionally used medicinal herb. Leaves and internodes from different positions were excised from 4-weeks-old in vitro propagated B. monnieri plants and cultured on MS basal medium supplemented with 3% (w/v) sucrose and 0.75% (w/v) agar for 4 weeks. The induction of de novo shoot buds was observed at petiolar cut edges of leaf and both proximal and distal cut ends of internode explants within 10–15 days of culture. The first histological changes could be observed after 4–5 days, with meristematic activity of vascular bundles. Proliferation of epidermal cells gave rise to dome-shaped protuberances followed by shoot apical meristems formation and their vascular connections with explant tissues within 2 weeks of culture. However, a basipetal gradient of shoot regeneration from both types of explants collected along the branch axis was noticed after 4 weeks of culture. Leaf and internode explants near the basal region exhibited significantly higher number of shoot buds and micro shoots (8.8/leaf explant and 15/internode explant). Microshoots (7–12 micro shoots/leaf or internode explants) elongated (shoot length 8–9 cm) within 8 weeks on phytohormone free MS medium. Excised micro shoots rooted (100%) in hormone free MS medium within two weeks of culture. Rooted plants were then acclimatized and transferred to field with 95% survival. This protocol may be used for micropropagation, genetic transformation as well as a model system for evaluation of changes associated with acquisition of competence of differentiated cells in phytohormone free medium.  相似文献   

8.
研究了蝴蝶兰(Phalaenopsis sp.)叶片外植体褐变过程中PAL基因表达的变化。结果表明,在整个褐变过程中,外植体的PAL基因表达出现差异,离体培养第3天的表达明显提高,一直到第8天还维持较高表达水平,以后随着外植体褐变的加重,PAL基因表达水平逐渐降低。与对照相比,在Fe盐浓度加倍为55.6 mg L-1培养基中培养的外植体PAL基因表达水平提高发生的时间比对照早,培养第2天就明显增强,随培养天数的延长,一直维持较高的表达水平;其PAL活性也高于对照,两种培养条件下,外植体总酚含量都随着其褐变加重而增加,说明PAL基因表达与蝴蝶兰外植体褐变过程相关。  相似文献   

9.
采用蛭石栽培,在100mmol·L-1NaCl胁迫下,对耐盐性不同的2个菜用大豆[Glycinemax(L.)Merr.]品种结荚期干物质积累、单株产量及叶片游离态多胺(PAs)水平的变化进行了研究。结果表明:NaCl胁迫显著降低了菜用大豆植株干重及单株产量,但耐盐品种"绿领特早"的降幅低于盐敏感品种"理想高产95-1";与"理想高产95-1"相比,"绿领特早"叶片在整个NaCl胁迫期间均维持了相对较低的H2O2含量、游离态腐胺(Put)含量及较高的游离态亚精胺(Spd)含量,在胁迫6~15d期间维持了相对较高的游离态精胺(Spm)含量、(Spd+Spm)/Put值及较低的Put/PAs值。说明耐盐品种"绿领特早"叶片具有较强的由游离态Put向游离态Spd和Spm转化的能力,维持了较低的游离态Put含量和较高的游离态Spd及Spm含量,进而抑制了活性氧过量积累。  相似文献   

10.
Light quality has previously been shown to influence morphogenesis in lettuce cotyledon explants, with white or red light promoting adventitious shoot production, and blue light inhibiting it. Endogenous polyamine (PA) concentrations were compared between explants cultured under different light qualities. Explants cultured under white or red light accumulated PAs during shoot primordia production, with a 5.6-fold increase compared to initial concentrations under white light, and 6.7-fold increase under red light. These results suggest polyamines are involved in the formation of shoot primordia. After 18 days in culture PA concentrations decreased under white light, and to a lesser extent under red light, signaling a shift in polyamine metabolism that correlates with shoot expansion, which occurs more readily under white light. Explants cultured under blue light accumulated polyamines for the first 7 days, to a level 1.3 times greater than initial values, followed by a gradual decline during the remainder of the culture period. Explants cultured under blue light also contained a greater proportion of PCA-insoluble conjugated PAs, compared to explants under white or red light, which contained greater proportions of free or PCA-soluble conjugated polyamines. The ratio of putrescine to spermidine was also different with a lower Put:Spd ratio being associated with shoot production under white or red light, and higher Put:Spd ratio being associated with culture under blue light.  相似文献   

11.
Changes in cell viability, proliferation, cell and nuclear morphology including nuclear and DNA fragmentation induced by 0.05 and 1 mM CdSO4 (Cd2+) in tobacco BY-2 cell line (Nicotiana tabacum L.) were studied in the course of 7 days. Simultaneously changes in endogenous contents of both free and conjugated forms of polyamines (PAs) were investigated for 3 days. The application of 0.05 mM Cd2+ evoked decline of cell viability to approximately 60% during the first 24 h of treatment. Later on degradation of cytoplasmic strands, formation of the stress granules and vesicles, modifications in size and shape of the nuclei, including their fragmentation, were observed in the surviving cells. Their proliferation was blocked and cells elongated. Beginning the first day of treatment TUNEL-positive nuclei were detected in cells cultivated in medium containing 0.05 mM Cd2+. Treatment with highly toxic 1 mM Cd2+ induced fast decrease of cell viability (no viable cells remained after 6-h treatment) and cell death occurred before DNA cleavage might be initiated. The exposure of tobacco BY-2 cells to 0.05 mM Cd2+ resulted in a marked accumulation of total PAs (represented by the sum of free PAs and their perchloric acid (PCA)-soluble and PCA-insoluble conjugates) during 3-day treatment. The increase in total PA contents was primarily caused by the increase in putrescine (Put) concentration. The accumulation of free spermidine (Spd) and spermine (Spm) at 12 and 24 h in 0.05 mM Cd2+ treated BY-2 cells and high contents of Spd and especially Spm determined in dead cells after I mM Cd2+ application was observed. The participation of PA conjugation with hydroxycinnamic acids and PA oxidative deamination in maintaining of free PA levels in BY-2 cells under Cd2+-induced oxidative stress is discussed.  相似文献   

12.
采用1/2 Hoagland营养液培养,研究了低氧胁迫下24-表油菜素内酯(EBR)对黄瓜幼苗叶片光合特性及多胺含量的影响.结果表明:低氧胁迫下黄瓜幼苗的净光合速率(Pn)、气孔导度(gs)、蒸腾速率(Tr)、胞间CO2浓度(Ci)显著下降,而叶绿素含量显著提高,幼苗生长受抑;低氧胁迫显著提高了黄瓜幼苗叶片的腐胺(Put)、亚精胺(Spd)、精胺(Spm)、多胺(PAs)含量和Put/PAs,但降低了(Spd+Spm) /Put.低氧胁迫下,外源EBR不仅显著提高了黄瓜幼苗的Pn、gs、Tr及叶绿素含量,也显著提高了黄瓜幼苗叶片的游离态Spm、结合态Spd、Spm及束缚态Put、Spd、Spm含量,促进了PAs的进一步积累,且降低了Put/PAs,提高了(Spd+Spm)/Put.可见,外源EBR调节了黄瓜幼苗内源多胺含量及形态的变化,维持了较高的光合性能,促进了叶面积和干物质量的显著增加,缓解了低氧胁迫对黄瓜幼苗的伤害.  相似文献   

13.
The influence of light regime, explant position and orientation on direct embryo formation from leaf explants of two Phalaenopsis, P. amabilis and P. Nebula, were investigated to optimize the protocol for regenerating of this orchid. When explants were cultured in light, direct embryogenesis was retarded in both species. Embryos showed whitish to pale green in color and larger size than those cultured in darkness. Furthermore, light regime induced explant browning, embryo necrosis and eventually low plantlet conversion rate. Sixty days of culture in darkness is the most suitable duration for direct embryo induction. Explant orientation also significantly affected direct embryo formation, and explants placed adaxial-side-up on culture medium had higher embryogenic response than abaxial-side-up orientation. In both species, the cut end had highest embryogenic competence than other parts of the explant. Moreover, when the leaf explant was cut transversely into two segments, the leaf basal segment had higher embryogenic competence than the leaf tip segment.  相似文献   

14.
We present evidences that ultrastructural electron microscope findings are valuable ways to understand the in vitro regeneration process, in particular in the yellow passion fruit. Shoot-regeneration was induced in hypocotyl and leaf-derived explants using 4.44 μM BAP, and the entire organogenic process was analyzed using conventional histology, scanning and transmission electronic microscopy. Both direct and indirect regeneration modes were observed in hypocotyl explants, but only direct regeneration occurred in leaf-derived cultures. In the direct pathway from both explant types, meristemoids developed into globular structures, here called protuberances. The peripheral meristematic layers of the protuberances displayed ultrastructural characteristics indicative of a high metabolic activity, and only these cells originated shoots and leaf primordia, the latter being frequent when leaf explants were used. Moreover, the peripheral cells of the protuberances derived from leaf explants lost adhesion during the culture, diminishing the regeneration rates. We recommend the use of hypocotyls as a source of explant to obtain shoots as well as a genetic transformation system for the yellow passion fruit. However, the direct pathway is preferred because a type of amitosis occurred in the peripheral cells of hypocotyl-derived calli, which has the potential to result in genetic instability of the regenerating plants/tissue.  相似文献   

15.
Abstract

Long-sized oligogalacturonides (OGs) are plant cell wall fragments involved in defence responses and developmental processes. A hormone/OG interaction in the control of different organogenic processes is known. However, hormones also modulate polyamine (PA) effects on organogenesis. Furthermore, OGs are known to affect mitotic activity leading to specific morphogenic events, and PAs are known to affect mitotic activity leading to xylogenesis. Thus, it may be reasonable to assume that OGs and PAs affect mitotic activity in the same cell types, and in the same hormone-induced morphogenic processes, e.g., xylogenesis. To gain further insight into this aspect, the effects of OGs, and of putrescine (Put) and spermidine (Spd), on auxin (indoleacetic acid, IAA) plus benzyladenine (BA)-induced morphogenesis in tobacco leaf explants were investigated histologically. The effect of PA biosynthetic inhibitors in the culture medium was also monitored, as well as the combined application of the inhibitor with the corresponding PA. Results show that vascular mitoses consistently occurred in the control (IAA+BA-treated) explants, leading exclusively to xylogenic nodule formation. The application of OGs resulted in an inhibition of vascular mitoses, and into a strong reduction of vascular nodule formation. By contrast, Spd enhanced both vascular mitoses and nodule formation, and Put was less effective than Spd on both events. Taken together, the results reveal a new biological activity of OGs and Spd in morphogenesis, obtained under the same hormonal conditions, and in the same tissue (i.e., the vascular parenchyma), namely the inhibition of xylogenesis by OGs, and its promotion by Spd. The fact that the effects of Spd and OGs on this morphogenic event may involve a different relationship with auxin is discussed.  相似文献   

16.
Oxidative events during in vitro regeneration of sunflower   总被引:1,自引:0,他引:1  
The changes in the activity of some antioxidant enzymes and endogenous H2O2 level in zygotic sunflower embryos during organogenesis and somatic embryogenesis were monitored. Pathways of regeneration were induced on media differing with sucrose concentration 87 mmol dm−3 for shoot [shoot induction medium (SIM) medium] and 350 mmol dm−3 [embryo induction medium (EIM) medium] for somatic embryo induction. Water potential of the explants cultured on SIM increased, while the embryos maintained on EIM showed middle water deficit stress. The pattern of superoxide dismutase (SOD) isoforms was similar in organogenic and embryogenic culture; however, the intensity of MnSOD bands was higher on SIM than on EIM. Differences in catalase activity were observed: high activity on SIM predominated, whereas on EIM it was reduced. The activity of guaiacol peroxidase in the explants producing shoots and somatic embryos differed at the beginning of culture, but became comparable at the time of shoot and somatic embryo formation (day 5). H2O2 content was unchanged in organogenic culture, but on EIM it increased on day 1 followed by significant decrease. The results indicate that sugar concentration per se, or via induction of different developmental pathways influences the activity of antioxidant enzymes and also H2O2 level in cultured sunflower embryos.  相似文献   

17.
A greenhouse pot experiment with different phosphorus supply was conducted to study growth, photosynthesis and free polyamine (PA) content in Plantago lanceolata L. plants in relation to arbuscular mycorrhizal (AM) colonization. Inoculum of Glomus fasciculatum (BEG 53) was used. Inoculated plants had high colonization intensities which were related to the P supply. Non-mycorrhizal (NM) plants showed a typical yield response curve for P availability. Dry masses of mycorrhizal (M) plants were higher at the lowest soil P content than those of NM plants, but the opposite was found at the highest P supply. P contents in M plants were always higher. There were no differences in chlorophyll (Chl) concentrations (except the lowest soil P content) and ratios of variable to maximum Chl fluorescence (Fv/Fm) values between M and NM plants, whereas M plants had higher ratios of leaf area to fresh mass (A/f.m.) at low soil P contents and they had significantly higher CO2 fixation capacities per unit leaf area. Free putrescine (Put), spermidine (Spd) and spermine (Spm) contents in NM plants were usually highest at the lowest P supply. The ratios of Put/(Spd+Spm) were identical in M and NM leaves. They were significantly higher, however, in NM roots at the two low P doses. It is concluded, that a P nutritional status might exist, below which PA concentrations and ratio are increased drastically, possibly indicating P deficiency or a certain state of plant development with a higher demand for AM symbiosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Leaf explants of Convolvulus arvensis produce shoots when cultured on Murashige and Skoog salts, sucrose, vitamins and 0.05 mg/liter IAA plus 7.0 mg/liter 2-isopentenyl adenine. Shoot-inducing, root-inducing, or callus-inducing medium (SIM, RIM, or CIM) will cause small amounts of callus to form at the cut edges of the explant. This first-formed callus is developmentally interchangeable: SIM induces shoots in callus formed on CIM or SIM with equal effect and efficiency. Once induction begins in competent callus, the callus is no longer interchangeable. Under the continued influence of SIM, cells, or groups of cells become determined for shoot formation. This determination is strongly canalized for shoot formation: subsequent transfer to root-inducing medium does not affect the formation of shoots by the explant. The control of organogenesis by the auxin/cytokinin balance must occur between the time the tissue becomes competent and the time it is determined for shoot (or root) development. It is not known whether this control is a single or multiple phenomenon.  相似文献   

19.
The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.  相似文献   

20.
In two-step culture systems for efficient shoot regeneration, explants are first cultured on auxin-rich callus-inducing medium (CIM), where cells are activated to proliferate and form calli containing root-apical meristem (RAM)-type stem cells and stem cell niche, and then cultured on cytokinin-rich shoot-inducing medium (SIM), where stem cells and stem cell niche of the shoot apical meristem (SAM) are established eventually leading to shoot regeneration. In the present study, we examined the effects of inhibitors of auxin biosynthesis and polar transport in the two-step shoot regeneration culture of Arabidopsis and found that, when they were applied during CIM culture, although callus growth was repressed, shoot regeneration in the subsequent SIM culture was significantly increased. The regeneration-stimulating effect of the auxin biosynthesis inhibitor was not linked with the reduction in the endogenous indole-3-acetic acid (IAA) level. Expression of the auxin-responsive reporter indicated that auxin response was more uniform and even stronger in the explants cultured on CIM with the inhibitors than in the control explants. These results suggested that the shoot regeneration competence of calli was enhanced somehow by the perturbation of the endogenous auxin dynamics, which we discuss in terms of the transformability between RAM and SAM stem cell niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号