首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact LM cells, a line of cultured mouse fibroblasts, exhibited and adenylate cyclase (APT pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity in the presence exogenous [α-32]ATP which was 20–30% of that observed with comparable preparations of lysed cells. The extent of NaF and prostaglandin E1 stimulation was comparable in intact cells and lysed cells. 96% of the added ATP and 92% of the cyclic AMP produced by intact cells could be isolated extracellularly in the incubation medium. Cellular integrity under assay conditions was monitored by trypan blue exclusion. These data suggest that LM cells contain an endenylate cyclase activity whic is accessible to extracellular ATP.  相似文献   

2.
Unilaterally cryptorchid rats were examined at 3, 8, 15, 22 and 28 days after operation. There was a selective decrease in the adenylate cyclase (ATP pyrophosphate--lyase (cyclizing), EC 4.6.1.1) responses to gonadotrophin stimulation in the abdominal testis. This was associated with a parallel decrease in specific FSH and LH binding. There was no reduction in the response of testicular adenylate cyclases to prostaglandin (PG) E-1 or fluoride stimulation, indicating that both the GTP binding protein (N-component) and the catalytic subunit of the adenylate cyclase complexes were intact. The reduction in FSH-responsive adenylate cyclase activity in the abdominal testis was not due to a change in the Km for adenylate cyclase activation, but was due to a reduction in maximal velocities. Unilateral cryptorchidism was also associated with a rapid decline in soluble Mn2+-dependent adenylate cyclase activity in germ cells (spermatids). By 3 days after operation there was an 82% decrease in germ cell adenylate cyclase activity. The loss of soluble Mn2+-dependent adenylate cyclase activity was associated with a parallel decrease in Sertoli cell secretion of androgen binding protein, indicating that Sertoli cell factors may be important for the maintenance of germ cell adenylate cyclase activity. The desensitization of the gonadotrophin--responsive adenylate cyclases and the loss of gonadotrophin receptors in Leydig and Sertoli cells were not due to changes in plasma gonadotrophin values because LH concentrations were within normal limits and plasma FSH was only marginally elevated in the cryptorchid rats. No significant alterations of any of these parameters were seen in the scrotal testis of unilaterally cryptorchid rats when compared to values for intact controls.  相似文献   

3.
Adenylate cyclase (ATP pyrophosphate-lyase (cylizing), EC 4.6.1.1) activity, measured in homogenates of normal, malignant and hybrid mammalian cell lines, is enhanced and subsequently inhibited by increasing concentrations of trypsin (EC 3.4.21.4). Treatment of intact cells with trypsin appears to cause latent activation of adenylate cyclase (i.e. activation which is only expressed after homogenization of the cells). Conversely, adenylate cyclase activity of a normal Chinese hamster fibroblast cell line is inhibited in intact cells by trypsin through the degradation of some site on the outer surface of the plasma membrane. The prostaglandin E1 receptor is not affected by trypsinization of cells.  相似文献   

4.
One of the characteristics of malignant cells is a poor response to hormones and a low level of cyclic AMP. Whilst this is true of intact P388 mouse lymphoma cells, high levels of adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity can be measured in particulate preparations of these cells. When ATP is added to the incubation medium of intact lymphoma cells, the cyclic AMP level is enhanced. This effect of ATP is not mediated by adenosine, nor is it enhanced by NaF. The ATP content of the lymphoma cells is much lower than that of CH23 Chinese hamster fibroblast and PCM3 hybrid cells, whose cyclic AMP levels are not affected by the presence of ATP. This suggests that adenylate cyclase, in the lymphoma cells, is bathed in a pool which is deficient in substrate. The substrate concentration of this pool is thought to be elevated by addition of ATP to the incubation medium with ATP, itself, crossing the plasma membrane.  相似文献   

5.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

6.
The effects of cholera toxin and 5′-guanylylimidodiphosphate (Gpp(NH)p) on human spermatozoal adenylate cyclase activity were tested. Cholera toxin had no demonstrable effect on adenylate cyclase activity in human spermatozoa at concentrations between 5 and 20 μg/ml, whether the toxin was preincubated with intact spermatozoa between 5 min and 5 h prior the adenylate cyclase assay, or was added to lysed spermatozoa, where the adenylate cyclase would be accessible to the toxin. In contrast, Gpp(NH)p at concentrations between 10 and 100 μM was effective in activating human spermatozoal adenylate cyclase activity.  相似文献   

7.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

8.
To test the hypothesis that phosphatidic acid (PhA) is involved in the carbachol inhibition of hormone stimulated accumulation of cAMP we observed the effects of PhA on PGE1-stimulation of cAMP in WI-38 fibroblasts. PhA inhibited PGE1-stimulated cAMP accumulation of WI-38 fibroblasts; maximum inhibition (approximately 50-80%) occurred at a PhA concentration of 1.0 microM and significant inhibition was observed with a concentration of 0.1 microM. The full effects of PhA were evident within 15 sec after the co-addition of PGE1 and PhA. Addition of PhA to cells which had been pre-stimulated with PGE1 resulted in the rapid decay of cAMP levels to a new steady state level with a t 1/2 of approximately 65 sec. The inhibition produced by PhA did not appear to be simply attributable to a depolarization or increased intracellular Ca2+, since addition of either KCl or the Ca2+ ionophore A23187 did not lower PGE1-stimulated cAMP accumulation. When intact cells were pretreated with PhA then lysed and adenylate cyclase immediately assayed, no detectable changes in broken cell adenylate cyclase activities were observed. Also, PhA added directly to adenylate cyclase assays at concentrations as high as 100 microM produced no detectable inhibition of the membrane fraction adenylate cyclase activities. Nonetheless, our results suggest that adenylate cyclase activity in intact cells may be directly affected by physiological levels of PhA . Further, the similarities of carbachol [Butcher, R. W., Journal of Cyclic Nucleotide Research, 4:411 (1978)] and PhA inhibition support the hypothesis that carbachol (acetylcholine) exerts its effect on adenylate cyclase through alterations of the plasma membrane phospholipid composition.  相似文献   

9.
Epinephrine increased adenylate cyclase activity 10 to 15 fold in lysates of the cultured human astrocytoma cell line 132-1N1. GTP had little effect on adenylate cyclase activity of lysed cell preparations either with or without added epinephrine. However, the epinephrine stimulation of adenylate cyclase was essentially lost (less than 90%) when a washed nuclei-free membrane preparation of the cyclase was assayed. A 10 to 15 fold epinephrine stimulation of the membrane adenylate cyclase could be demonstrated if cytosol of GTP were added to the assay with the hormone. The criteria of anion exchange, cation exchange, gel exclusion and paper chromatography indicated that the cytosolic agents which acted synergistically with hormones were GTP and GDP. The apparent Kact's for the synergistic action of GDP and GTP were essentially identical (1.0 muM) and of all the other nucleotides examined only GDP had a potency similar to GTP. However, the effect of GDP was apparently due to its rapid conversion to GTP even in the absence of a regenerating system. With epinephrine pretreatment of the intact 132-1N1 cells there was a specific loss of epinephrine stimulation of adenylate cyclase activity. The hormone pretreatment did not alter the capacity of the cytosol from these desensitized cells to potentiate epinephrine stimulation of the cyclase. Rather, the alteration was in the particulate fraction of the lysate. The desensitization of the membranous cyclase was stable and not reversed by GTP.  相似文献   

10.
The mechanism of action of cholera toxin in pigeon erythrocyte lysates.   总被引:34,自引:0,他引:34  
The adenylate cyclase activity of intact pigeon erythrocytes begins to rise after about 20 min of exposure to cholera toxin. The maximum rate at which the cyclase activity increases appears to be limited by the number of toxin molecules which can reach an intracellular target. If the erythrocytes are made permeable to the toxin by a bacterial hemolysin, no such limit exists, and adenylate cyclase activity starts to rise immediately upon the addition of toxin, and continues to rise to a maximum at an initially constant rate which is dependent upon the concentration of toxin. On lysed erythrocytes, the addition of cholera antitoxin immediately prevents any further rise in adenylate cyclase activity, but does not reverse any activation already achieved. Erythrocyte lysates may also be activated by isolated peptide A1 of cholera toxin, although activation of adenylate cyclase of intact erythrocytes requires the complete toxin molecule. In the intact cells, toxin first attaches by its Component B to surface receptors of which there are about 30 per erythrocyte. Subsequently, peptide A1 but not Component B is inserted into the erythrocyte. It takes only about 1 min at 37 degrees for peptide A1 to be sufficiently deep within the cell membrane to be inaccessible to extracellular antitoxin, but its complete transit through the membrane appears to take longer. The surface receptors are used only once, for they remain blocked by Component B. The number of receptors available on the surface may be increased by soaking cells in ganglioside GM1. Cholera toxin also decreases the rate of apparently spontaneous loss of adenylate cyclase activity and increases the response to epinephrine. Theophylline inhibits the action of cholera toxin.  相似文献   

11.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

12.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

13.
Nuclei from purified human peripheral lymphocytes were prepared by incubations with Triton X-100 to disrupt the cells, followed by sucrose-density gradient centrifugation. The nuclei were pure as judged by phase-contrast microscopy and had low contents of non-nuclear marker enzymes. In addition, nuclei prepared from lymphocytes surface-labelled with 125I had only 2-7% of the radioactivity bound to intact lymphocytes. At 3.3 mM-Ca2+ and 100 micronM-ATP a fluoride-sensitive adenylate cyclase was demonstrated in nuclei prepared in 0.2% Triton X-100 or 0.33% Triton X-100. There was linear accumulation of cyclic AMP for 10 min in both preparations. The apparent Km for ATP was 90 micronM. Adenylate cyclase activity was augmented by 1.0 mM-Mn2+ and inhibited at higher concentrations. Ca2+ showed two peaks of stimulation, at 1.0-2.5 mM- and above 10 mM-Ca2+. Mg2+ was inhibitory at all concentrations. EDTA OR EGTA only slightly decreased adenylate cyclase activity, suggesting that another metal ion may be necessary for activity. Adenylate cyclase activity was stimulated by 10mM-isoproterenol and 10 micronM-adrenaline in the presence of a phosphodiesterase inhibitor. Phytohaemagglutinin and prostaglandin E1 alone or in combination with isoproterenol had no effect on nuclear adenylate cyclase activity in either nuclei preparation. These results indicate that human lymphocyte nuclei contain one or several adenylate cyclases which differ from adenylate cyclases found in other subcellular fractions of these cells with regard to their bivalentcation requirements and responsiveness to pharmacological agents.  相似文献   

14.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   

15.
Reaction of cholera toxin with NN'-bis(carboximidomethyl)tartaramide dimethyl ester produced several cross-linked species that had subunit B (which binds to the cell surface) and peptides A1 (which activates adenylate cyclase) and A2 all covalently joined together. This cross-linded material had activity with pigeon erythrocytes that was comparable in all respects with that of native toxin. It activated the adenylate cyclase of whole cells, showing a characteristic lag phase, and this activation was increased if the cells had been preincubated with ganglioside GM1, but abolished if the protein had been preincubated with the ganglioside. It activated the enzyme in lysed cells more strongly and without the lag phase. These results show that the toxin is active even when peptide A1 cannot be released from the rest of the molecule.  相似文献   

16.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

17.
A latent, as well as an expressed form of adenylate cyclase coupled to beta-adrenergic receptors is present in intact crude synaptosomal preparations from bovine cerebellum. The latent adenylate cyclase activity was assayed in Krebs-Ringer buffer by [3H]adenine labeling and was found to be coupled to a beta 1-like adrenergic receptor. The externally accessible adenylate cyclase assayed in the same medium with [3H]ATP was stimulated via beta 2-adrenergic receptors.  相似文献   

18.
The subcellular localization of adenylate cyclase was examined in human skeletal muscle. Three major subcellular membrane fractions, plasmalemma, sarcoplasmic reticulum and mitochondria, were characterized by membrane-marker biochemical studies, by dodecyl sulfate polycrylamide gel electrophoresis and by electron microscopy. About 60% of the adenylate cyclase of the homogenate was found in the plasmalemmal fraction and 10–14% in the sarcoplasmic reticulum and mitochondria. When the plasmalemmal preparation was subjected to discontinuous sucrose gradients, the distribution of adenylate cyclase in different subfractions closely paralleled that of (Na+ + K+)-ATPase. The highest specific activity was found in a fraction which setteled at the 0.6–0.8 M sucrose interface. The electron microscopic study of this fraction revealed the presence of flattened sacs of variable sizes and was devoid of mitochondrial and myofibrillar material. The electron microscopy of each fraction supported the biochemical studies with enzyme markers. The three major membrane fractions also contained a low Km phosphodiesterase activity, the highest specific activity being associated with sarcoplasmic reticulum.The plasmalemmal adenylate cyclase was more sensitive to catecholamine stimulation than that associated with sarcoplasmic reticulum or mitochondria. The catecholamine-sensitive, but not the basal, enzyme was further stimulated by GTP. The plasmalemmal adenylate cyclase had typical Michaelis-Menten kinetics with respect to ATP and the apparent Km for ATP was approx. 0.3. mM. The pH optimum for that enzyme was 7.5. The enzyme required Mg2+, and the concentration to achieve half-maximal stimulation was approx. 3 mM. Higher concentrations of Mg2+ (about 10 mM) were inhibitory. Solubilization of the plasmalemmal membrane fraction with Lubrol-PX resulted in preferential extraction of 106 000- and 40 000-dalton protein components. The solubilized adenylate cyclase lost its sensitivity for catecholamine stimulation, and the extent of fluoride stimulation was reduced to one-sixth of that of the intact membranes. It is concluded that the catalytically active and hormone-sensitive adenylate cyclase is predominantly localized in the surface membranes of the cells within skeletal muscle. (That “plasmalemmal” fraction is considered likely to contain, in addition to plasmalemma of muscle cells, plasmalemma of bloodvessel cells (endothelium, and perhaps smooth muscle) which may be responsible for a certain amount of the adenylate cyclase activity and other propertiesobserved in that fraction.)The method of preparation used in this study provides a convenient material for evaluating the catecholamine-adenylate cyclase interactions in human skeletal muscle.  相似文献   

19.
A unique feature of eucaryotic adenylate cyclases is their interaction with GTP-binding proteins that mediate hormonal responses. Until now, there has been no evidence for regulation of Escherichia coli adenylate cyclase by a GTP-binding protein. We describe here that the most abundant protein in E. coli, the GTP-binding protein EF-Tu, which is important as an elongation factor in protein synthesis, also serves as a stimulator of adenylate cyclase activity. Homogeneous EF-Tu specifically increased the activity of purified adenylate cyclase as much as 70%; other E. coli GTP-binding proteins had no effect on enzyme activity. A study of the guanine nucleotide specificity for EF-Tu-mediated stimulation of adenylate cyclase activity suggested that the preferred activator is EF-Tu X GDP. To account for the GTP-specific stimulation of adenylate cyclase activity observed in intact cells, we propose that the nucleotide specificity for EF-Tu-dependent activation of adenylate cyclase is governed by other factors in the cell.  相似文献   

20.
Treatment of intact normal rat kidney fibroblasts, or of purified NRK plasma membranes, with trypsin or papain markedly enhances adenylate cyclase activity [ATP pyrophosphatelyase (cyclizing) EC 4.6.1.1]. Limited proteolysis (25 μg/ml trypsin for 7 min) of confluent cells grown with unheated calf serum significantly increases cyclase activity, whereas similar treatment of sparse cells causes only a marginal increase in cyclic AMP formation. To determine which membrane protein(s) is altered under conditions which result in proteolytic activation of adenylate cyclase, purified plasma membranes and intact normal rat kidney cells were subjected to limited proteolysis and membrane proteins analyzed by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. Membranes prepared from intact confluent normal rat kidney cells exposed to mild trypsinization showed a decrease in proteins of 56,000, 46,000, 37,000, and 32,000 daltons. Trypsin treatment of intact, sparse cells does not activate the cyclase system and does not lead to modification of the 46,000-dalton membrane protein. Treatment of purified normal rat kidney plasma membranes results in the loss of numerous bands in the high molecular mass region (>150,000 daltons) as well as decreases membrane proteins of 56,000, 49,000, 46,000, and 23,000 daltons. Compared with trypsin, the proteolytic action of papain appears to be quite specific, causing a discernible decrease in only the 46,000-dalton protein. The correlation between modification of the 46,000-dalton membrane component and the activation of the cyclase system suggests that perhaps this protein is proteolytically modified to elicit activation of adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号