首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range ∼ 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.  相似文献   

2.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

3.
DNA topoisomerase II, genotoxicity, and cancer   总被引:6,自引:0,他引:6  
Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.  相似文献   

4.
In all organisms, type II DNA topoisomerases are essential for untangling chromosomal DNA. We have determined the structure of the DNA-binding core of the Methanococcus jannaschii DNA topoisomerase VI A subunit at 2.0 A resolution. The overall structure of this subunit is unique, demonstrating that archaeal type II enzymes are distinct from other type II topoisomerases. However, the core structure contains a pair of domains that are also found in type IA and classic type II topoisomerases. Together, these regions may form the basis of a DNA cleavage mechanism shared among these enzymes. The core A subunit is a dimer that contains a deep groove that spans both protomers. The dimer architecture suggests that DNA is bound in the groove, across the A subunit interface, and that the two monomers separate during DNA transport. The A subunit of topoisomerase VI is homologous to the meiotic recombination factor, Spo11, and this structure can serve as a template for probing Spo11 function in eukaryotes.  相似文献   

5.
6.
Type II topoisomerases are essential enzymes that are also the primary cellular targets for a number of important anticancer drugs. These drugs act by increasing levels of topoisomerase II-mediated DNA cleavage. Recent studies indicate that endogenous forms of DNA damage, such as abasic sites and base mismatches, also stimulate the DNA scission activity of the enzyme. To extend our understanding of how type II topoisomerases react to DNA damage, the effects of abasic sites, and oxidized and alkylated bases on DNA cleavage mediated by human topo-isomerase IIα and β were determined. Based on experiments that incorporated random abasic sites into plasmid DNA, human type II enzymes can locate lesions even within a background of several thousand undamaged base pairs. As determined by experiments that utilized site-specific forms of DNA lesions, oxidized or monoalkylated purines that allow base pairing and induce little distortion in the double helix have modest effects on topoisomerase II-mediated DNA cleavage. In contrast, 1,N6-ethenoadenine, a bulky lesion that disrupts base pairing, enhanced DNA cleavage ~10-fold. 1,N6-Ethenoadenine is the first lesion found to rival the stimulatory effects of apurinic sites on the DNA scission activity of eukaryotic type II topoisomerases.  相似文献   

7.
A number of natural products with medicinal properties increase DNA cleavage mediated by type II topoisomerases. In an effort to identify additional natural compounds that affect the activity of human type II topoisomerases, a blind screen of a library of 341 Mediterranean plant extracts was conducted. Extracts from Nuphar lutea, the yellow water lily, were identified in this screen. N. lutea has been used in traditional medicine by a variety of indigenous populations. The active compound in N. lutea, 6,6’-dihydroxythiobinupharidine, was found to enhance DNA cleavage mediated by human topoisomerase IIα and IIβ ∼8-fold and ∼3-fold, respectively. Mechanistic studies with topoisomerase IIα indicate that 6,6’-dihydroxythiobinupharidine is a “covalent poison” that acts by adducting the enzyme outside of the DNA cleavage-ligation active site and requires the N-terminal domain of the protein for its activity. Results suggest that some of the medicinal properties of N. lutea may result from the interactions between 6,6’-dihydroxythiobinupharidine and the human type II enzymes.  相似文献   

8.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

9.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

10.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

11.
A considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.  相似文献   

12.
In the past few years, two new DNA topoisomerases have been discovered in bacteria, bringing the total number of DNA topoisomerases in E. coli to four. Two classes of topoisomerases, type 1 and type 2, are distinguishable by their amino acid homology and their apparent reaction mechanism. Of the four E. coli topoisomerases, there are two type 1 and two type 2 enzymes. In eukaryotes, the existence of multiple type 1 and type 2 enzymes has also become apparent. The existence of these multiple enzymes provokes a question whose answer has both evolutionary and physiological implications: are these topoisomerases functionally redundant, or have they acquired sufficient specialization that they now perform unique biological reactions? In bacteria, there is evidence for both specialization and redundancy in the functions of topoisomerases.  相似文献   

13.
DNA topoisomerases as targets for chemotherapy   总被引:5,自引:0,他引:5  
K M Rose 《FASEB journal》1988,2(9):2474-2478
  相似文献   

14.
A ParE-ParC fusion protein is a functional topoisomerase.   总被引:4,自引:0,他引:4  
L S Lavasani  H Hiasa 《Biochemistry》2001,40(29):8438-8443
Type II topoisomerases are responsible for DNA unlinking during DNA replication and chromosome segregation. Although eukaryotic enzymes are homodimers and prokaryotic enzymes are heterotetramers, both prokaryotic and eukaryotic type II topoisomerases belong to a single protein family. The amino- and carboxyl-terminal domains of eukaryotic enzymes are homologous to the ATP-binding and catalytic subunits of prokaryotic enzymes, respectively. Topoisomerase IV, a prokaryotic type II topoisomerase, consists of the ATP-binding subunit, ParE, and the catalytic subunit, ParC. We have joined the coding regions of parE and parC in frame and constructed a fusion protein of the two subunits of topoisomerase IV. This fusion protein, ParEC, can catalyze both decatenation and relaxation reactions. The ParEC protein is also capable of decatenating replicating daughter DNA molecules during oriC DNA replication in vitro. Furthermore, the fusion gene, parEC, complements the temperature-sensitive growth of both parC and parE strains, indicating that the ParEC protein can substitute for topoisomerase IV in vivo. These results demonstrate that a fusion protein of the two subunits of topoisomerase IV is a functional topoisomerase. Thus, a heterotetrameric type II topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.  相似文献   

15.
Data on the interaction of DNA type I topoisomerases from the murine and human placenta cells with specific and nonspecific oligonucleotides of various structures and lengths are summarized. The relative contributions of various contacts between the enzymes and DNA that have previously been detected by X-ray analysis to the total affinity of the topoisomerases for DNA substrates are estimated. Factors that determine the differences in the enzyme interactions with specific and nonspecific single- and double-stranded DNAs are revealed. The results of the X-ray analysis of human DNA topoisomerase I are interpreted taking into account data on the comprehensive thermodynamic and kinetic analysis of the enzyme interaction with the specific and nonspecific DNAs.  相似文献   

16.
DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA topoisomerases and DNA supercoiling, are not so evident. A computer simulation and analysis of linked sister plasmids formed in Escherichia coli cells with suppressed topoisomerase IV suggests an insight into the latter mechanism.  相似文献   

17.
18.
Interaction of the DNA type I topoisomerases from the murine and human placenta cells with nonspecific oligonucleotides was analyzed. The contributions of strong and week nonspecific electrostatic, van der Waals's, and hydrophobic interactions, and hydrogen bonding of the enzymes to the complex formation with the single- and double-stranded DNAs were determined. The factors that determine the top-priority recognition of the topologically stressed DNA were revealed. The results were interpreted in comparison with the X-ray analysis data for human DNA topoisomerase I.  相似文献   

19.
The ATP-independent type I and the ATP-dependent type II DNA topoisomerase of the yeast Saccharomyces cerevisiae have been purified to near homogeneity, and the purification procedures are reported. Both purified topoisomerases are single subunit enzymes with monomer weights of Mr = 90,000 and 150,000 for the type I and type II enzyme, respectively. Sedimentation and gel filtration data suggest that the type I enzyme is monomeric and the type II enzyme is dimeric. Similar to other purified eukaryotic topoisomerases, the yeast type I enzyme does not require a divalent cation for activity, but is stimulated 10-20-fold in the presence of 7-10 mM Mg(II) or Ca(II). Mn(II) is about 25% as efficient as Mg(II) in this stimulation but Co(II) is inhibitory. The yeast type II topoisomerase has an absolute requirement for a divalent cation: Mg(II) is the most effective, whereas Mn(II), Ca(II), or Co(II) supports the reaction to a lesser extent. The type II enzyme also requires ATP or dATP; the nonhydrolyzable ATP analogues adenylyl imidodiphosphate and adenylyl (beta,gamma-methylene)diphosphonate are potent inhibitors. Both yeast topoisomerases are completely inhibited by N-ethylmaleimide at 0.5 mM. In addition, the type II enzyme, but not the type I enzyme, is inhibited to various extents by coumermycin, ethidium, and berenil. Both topoisomerases are nuclear enzymes; no topoisomerase specific to mitochondria has been detected.  相似文献   

20.
Topoisomerases are essential ubiquitous enzymes, falling into two distinct classes. A number of eubacteria including Escherichia coli, typically contain four topoisomerases, two type I topoisomerases and two type II topoisomerases viz. DNA gyrase and topoisomerase IV. In contrast several other bacterial genomes including mycobacteria, encode for one type I topoisomerase and a DNA gyrase. Here we describe a new type II topoisomerase from Mycobacterium smegmatis which is different from DNA gyrase or topoisomerase IV in its characteristics and origin. The topoisomerase is distinct with respect to domain organization, properties and drug sensitivity. The enzyme catalyses relaxation of negatively supercoiled DNA in an ATP-dependent manner and also introduces positive supercoils to both relaxed and negatively supercoiled substrates. The genes for this additional topoisomerase are not found in other sequenced mycobacterial genomes and may represent a distant lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号