首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress during the prenatal and early postnatal periods (perinatal stress, PS) is known to impact offspring cognitive, behavioral, and physical development, but effects on skeletal growth are not clear. Our objective was to analyze effects of variable, mild, daily PS exposure on adult offspring long bone length. Twelve pregnant rat dams were randomly assigned to receive variable stress from gestational days 14–21 (Prenatal group), postpartum days 2–9 (Postnatal), both periods (Pre–Post), or no stress (Control). Differences in adult offspring tibia and femur length were analyzed among treatment groups. Mean tibia length differed among groups for males (P = 0.016) and females (P = 0.009), and differences for femur length approached significance for males (P = 0.051). Long bone length was shorter among PS‐exposed offspring, especially those exposed to postnatal stress (Postnatal and Pre–Post groups). Results persisted when controlling for nose–tail length. These differences might reflect early stunting that is maintained in adulthood, or delayed growth among PS‐exposed offspring. This study suggests that PS results in shorter long bones in adulthood, independently of effects on overall body size. Stunting and growth retardation are major global health burdens. Our study adds to a growing body of evidence suggesting that PS is a risk factor for poor linear growth. Am J Phys Anthropol 149:307–311, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Summary The development of the glial cells of the rat median eminence (ME), including the supraependymal cells, was investigated from embryonic day (ED) 14 through postnatal day (PD) 7, and pituicyte development from ED 12 through ED 17. The anlage of the ME and neurohypophysis shows a neuroepithelial-like structure at ED 12. From ED 13 to 15, the cells of both regions start to differentiate. At the ultrastructural level, only one cell type appears. At the beginning of ED 16, glioblasts of the oligodendrocyte and astrocyte series migrate laterally (from the region of the arcuate nucleus) into the ME. Also at this time the first distinctive structural features appear in the neurohypophysial anlage, the cells of which later develop into pituicytes. Starting at ED 18, tanycytes and astrocytic tanycytes arise in the ME from local glial cells, and somewhat later oligodendroblasts and astroblasts are formed from immigrant glioblasts. Due to their common features, the pituicytes, tanycytes and astrocytic tanycytes apparently represent different forms of the same parent cell type. Microglial and supraependymal cells are first seen at ED 12. Initially, they resemble the prenatal phagocytic connective tissue cells and mature in the fetus into typical electron-dense microglia and macrophage-like supraependymal cells. Both cell types are apparently of mesodermal origin. The microglial elements of the ME probably migrate from the mesenchyma through the basement into the nervous tissue. The intraventricular macrophages of the infundibular region may originate from microglia, epiplexal cells and subarachnoid macrophages.Dedicated to Prof. I. Törö, Budapest, on the occasion of his 80th birthday  相似文献   

3.
This study examined critical periods in development to determine when offspring were most susceptible to dietary sodium manipulation leading to amphetamine sensitization. Wistar dams (n = 6-8/group) were fed chow containing low (0.12% NaCl; LN), normal (1% NaCl; NN), or high sodium (4% NaCl; HN) during the prenatal or early postnatal period (birth to 5 wk). Offspring were fed normal chow thereafter until testing at 6 mo. Body weight (BW), blood pressure (BP), fluid intake, salt preference, response to amphetamine, open field behavior, plasma adrenocorticotropin hormone (ACTH), plasma corticosterone (Cort), and adrenal gland weight were measured. BW was similar for all offspring. Offspring from the prenatal and postnatal HN group had increased BP, NaCl intake, and salt preference and decreased water intake relative to NN offspring. Prenatal HN offspring had greater BP than postnatal HN offspring. In response to amphetamine, both prenatal and postnatal LN and HN offspring had increased locomotor behavior compared with NN offspring. In a novel open field environment, locomotion was also increased in prenatal and postnatal LN and HN offspring compared with NN offspring. ACTH and Cort levels 30 min after restraint stress and adrenal gland weight measurement were greater in LN and HN offspring compared with NN offspring. These results indicate that early life experience with low- and high-sodium diets, during the prenatal or early postnatal period, is a stress that produces long-term changes in responsiveness to amphetamines and to subsequent stressors.  相似文献   

4.
5.
Abstract— From the third day of pregnancy rats were fed a diet containing either 7% casein (experimental) or 24% casein (control). During lactation the control dams were fed the 24% casein diet and the experimental dams a 12% casein diet. From 25 to 50 days of age the experimental and control progeny were fed diets containing 7 and 24% casein, respectively. Between 50 and 120 days both groups were fed a diet containing 24% crude protein. Several indications of brain maturation in two brain areas were examined at various stages of development. In addition to retardation of brain growth, protein restriction led to myelin of an immature composition at 25 and 50 days of age. The immature composition was indicated by a low plasmalogen content at 25 days and by a high phospholipid and low galactolipid and plasmalogen contents at 50 days of age. The activity of the myelin marker enzyme, 2′3′-cyclic nucleotide 3′-phosphohydrolase (CNP), was significantly lower in the brains (excluding the cerebella) of malnourished rats at 21, 30 and 50 days. At all ages except at 50 days the activity of CNP in the cerebellum was higher in protein-deprived animals than in controls. The activity of glutamic acid decarboxylase (GAD) in the brains (excluding the cerebella) of protein-deprived rats was significantly lower at 21, 25 and 30 days but not at 50 and 65 days of age. As indicated by brain/body ratios, myelin composition and GAD activity, nutritional rehabilitation led to almost complete recovery of brain maturity, but the activity of CNP remained lower in the experimental group after rehabilitation.  相似文献   

6.
Adult dietary yeast modulates mortality rate and reproduction of the Mediterranean fruit fly, Ceratatis capitata. In the medfly, a sugar-only diet leads to low mortality rates and reduced reproduction; addition of dietary yeast increases both mortality and egg laying. In Drosophila melanogaster low availability of dietary yeast is known to increase life span and reduce the rate of reproduction. Despite these similarities, because of differences in experimental design it remains unclear whether a common physiological mechanism modulates the effect of diet on survival. Here, we investigate how mortality rate and reproduction in D. melanogaster respond to the treatment regime used to study the medfly: no-yeast versus full diet. We find that adult medfly and D. melanogaster have opposite responses to the absence of yeast: D. melanogaster have high mortality when on no-yeast diet; when switched to full diet, D. melanogaster reduce mortality rates to the level presented by females continuously maintained on yeast. This reduction in mortality is accompanied by increased fecundity. These patterns are observed in all tested wildtype stocks, but flies made sterile by mutation in the gene oo18 RNA-binding protein (orb) lack this response. D. melanogaster, unlike medflies, appear to require adult dietary yeast to maintain maximal survival, and the capacity to assimilate yeast for somatic processes is one wildtype function of the gene orb.  相似文献   

7.
8.
Although some studies have pointed out to embryo/fetal toxicity, knowledge about the potential toxicity of the fungicide epoxiconazole is still limited. Once the results of these previous studies have raised some concern, this study studied the effects of epoxiconazole maternal exposure on the physical endpoints in the development of rat pups. To accomplish that, the effects of epoxiconazole (50.0, 100.0, and 150.0 mg/kg) were examined when rats were exposed at two different developmental stages: during the first 6 days of pregnancy or in the organogenesis period (6-15 days). After parturition, pups were tested for growth and maturational milestones. Maternal exposure to the fungicide, independently of phase, resulted in significantly early mean time to vaginal opening and delayed time to testes descent in pups. Weight gain rate in pups and their mothers was not affected for the tested exposure period. The findings of this study emphasize that epoxiconazole maternal exposure may lead to alterations in developmental patterns in nursing pups, consistent with the known influence of epoxiconazole on steroid hormone synthesis.  相似文献   

9.
BACKGROUND: Extensive research on prenatal alcohol exposure has proven the potent teratogenicity of this substance of abuse. Children born to alcoholic mothers are often diagnosed with fetal alcohol syndrome (FAS). Those afflicted with FAS often have muscle weakness, muscle wasting, and atrophy. This study assessed the effects of prenatal alcohol exposure on the developing rat neuromuscular system. METHODS: Pregnant Sprague-Dawley rats were injected intraperitoneally with 1.0 ml of 20% ethyl alcohol/100 gm body weight. Unexposed rats served as controls. The offspring were killed 2, 3, 4, and 5 weeks after birth, and their body weights were recorded. The tibialis anterior (TA) and extensor digitorum longus (EDL) muscles were recovered and weighed. The TA muscles were histochemically stained by silver cholinesterase in order to study the pattern of innervation. The EDL muscles were processed and stained by hematoxylin-eosin. The number and size of the EDL muscle fibers was quantified. The sciatic nerve was also removed and stained by Swank and Davenport's method to demonstrate the myelin pattern. RESULTS: Assessment at the neuromuscular junction showed a higher proportion of endplates polyneuronally innervated in the alcohol-exposed rats. The muscle weights, as well as the number and size of the muscle fibers, were significantly reduced in these animals. A light-microscopy examination of the nerve sections revealed alterations in the connectivity of myelin. CONCLUSIONS: The finding that a higher proportion of endplates were polyneuronally innervated in the alcohol-exposed rats indicates that the maturation process of the neuromuscular system was delayed, thus confirming the deleterious effects of alcohol on growth and maturation of the nerve-muscle system.  相似文献   

10.
Early experiences are of potential importance in shaping long-term behavior. This study examined the relative influence of prenatal and/or early postnatal experience of chemosensory stimuli on subsequent olfactory and dietary preferences of cats as newborns, at 9-10 weeks, and at 6 months. Cats were exposed to vanillin or 4-ethylguaiacol via their mother's diet either prenatally, postnatally, perinatally (prenatal and postnatal), or experienced no exposure to the stimuli (control). Newborns were given a two-choice olfactory test between the familiar "odor" and no odor; 9-10 week olds were tested for their preference between two food treats, one flavored with the familiar stimulus and the other unflavored; at 6 months, cats were given a choice of two bowls of food, one flavored with the familiar stimulus and the other unflavored. At all ages, cats preferred the familiar, and avoided the unfamiliar, stimulus. Perinatal exposure exerted the strongest influence on preference. Prenatal exposure influenced preference at all ages and postnatal exposure exerted a stronger effect as the cat aged. We conclude that long-term chemosensory and dietary preferences of cats are influenced by prenatal and early (nursing) postnatal experience, supporting a natural and biologically relevant mechanism for the safe transmission of diet from mother to young.  相似文献   

11.
12.
Early light experience influences the brain during development. Perinatal light exposure has an important effect on the development of the circadian system, although the role of quantity versus quality of light in this process is still unclear. We tested the development of the circadian rhythm of locomotor activity under constant bright light from the day of weaning, of six groups of rats raised under different light conditions during suckling. Results indicated that when rats received daily darkness during suckling (rats reared under constant darkness or light-dark cycles with dim or bright light) became arrhythmic when exposed to continuous bright light after weaning. However, those rats reared in the absence of darkness (constant dim or bright light, or alternating dim and bright light) developed a circadian rhythm, which was stronger and had a shorter period depending on the quantity of light received during suckling. Vasointestinal polypeptide immunoreactivity in the suprachiasmatic nucleus (SCN) was higher in those rats with weaker rhythms. However, no apparent differences among these groups were found in the melanopsin-expressing retinal ganglion cells, which provide the SCN with light input in the photoentrainment process. When bright light was shifted to dim light in three of the groups on day 57 after weaning, all of them generated a circadian rhythm with a longer period in those rats previously arrhythmic. Our results indicate the importance of the amount of light received at the early stages of life in the development of the circadian system and suggest that darkness is needed for the normal development of circadian behaviour.  相似文献   

13.
Neonatal rats exposed prenatally to phenytoin (PHT) have been reported to have craniofacial abnormalities and growth retardation [Lorente et al.: Teratology 24:169-180, 1981]. This study reports on the persistence of these effects in the adult rat. Pregnant Sprague-Dawley rats were intubated on gestational days 9, 11, and 13 with 1,000 mg/kg PHT suspended in 1% carboxymethylcellulose (CMC). Six male and six female exposed offspring (PHT) and an equal number of control animals (CMC) were weighed through postnatal day 135, at which point they were killed and the skeletons were prepared for analysis. The PHT-exposed animals had reduced weights at all time points with the males more severely affected. A normal adolescent growth spurt was not observed in the exposed group. Absent or rudimentary lacrimal bones and nasolacrimal canals were note in all PHT-exposed rats. This contributed to the recessed positioning of the eyes that was grossly apparent. In addition, shorter and broader frontal bones in the PHT animals led to the appearance of hypertelorism. Ratios of craniofacial dimensions obtained by direct measurement of the skulls showed that the PHT offspring were significantly different in proportion from their control counterparts. The PHT skulls were smaller for body size with reduced facial height and broader midfacial regions. A unique craniofacial pattern was observed in the experimental offspring. Normal sexual dimorphism in craniofacial pattern was not expressed in the PHT group. These studies suggest that prenatal phenytoin exposure in the rat may interfere with the full expression of normal dimorphism based on gender and confirms the toxic effect of this drug on postnatal growth, adult body proportion, and craniofacial geometry.  相似文献   

14.
The levels of prothrombin mRNA in prenatal and postnatal rat tissues were analyzed in order to determine tissue distribution of prothrombin expression and to determine if increases in liver prothrombin mRNA during development correlated with previously documented developmental increases in plasma prothrombin levels. Maternal tissues were also analyzed in order to determine if prothrombin mRNA levels varied due to gestational or postpartum influences. Northern analysis demonstrated that rat liver prothrombin mRNA levels increased several-fold late in gestation and reached maximal levels by 13 days after birth. Prothrombin mRNA was also expressed in diaphragm, stomach, intestine, kidney, spleen and adrenal tissues during development. In maternal tissues during pregnancy, prothrombin mRNA was expressed in liver, diaphragm, stomach, uterus and placenta. Prothrombin mRNA levels in each of these tissues that were positive by Northern analysis were quantitated by solution hybridization analysis. Between gestational day 18 and postnatal day 13, liver prothrombin mRNA levels increased from approx. 600 to 2100 molecules per cell (a 3.5-fold increase). In maternal liver during pregnancy, between day 18 and day 22, prothrombin mRNA levels increased from approx. 1800 to 2100 molecules per cell. Immediately after delivery, maternal liver prothrombin mRNA levels decreased to approx. 50% of preparturition levels. Prothrombin mRNA levels in placental tissue ranged from approx. 100 to 250 molecules per cell. In other fetal, postnatal and maternal tissues, prothrombin mRNA expression was less than 100 molecules per cell. These results demonstrate that the level and tissue-type expression of prothrombin mRNA varies in response to prenatal and postnatal influences.  相似文献   

15.
16.
INTRODUCTION: Dietary sodium restriction results in activation of the renin-angiotensin-aldosterone-system. In the non-pregnant situation renin release in response to a low sodium diet is mediated by prostaglandins. We studied the effect of dietary sodium restriction on urinary prostaglandin metabolism in pregnancy. PATIENTS AND METHODS: In a randomized, longitudinal study the excretion of urinary metabolites of prostacyclin (6-keto-PGF(1 alpha)and 2,3-dinor-6-keto-PGF(1 alpha)) and thromboxane A(2)(TxB(2)and 2,3-dinor-TxB(2)) was determined throughout pregnancy and post partum in 12 women on a low sodium diet and in 12 controls. RESULTS: In pregnancy the excretion of all urinary prostaglandins is increased. The 6-keto-PGF(1 alpha)/ TxB(2)-ratio as well as the 2, 3-dinor-6-keto-PGF(1 alpha)/ 2,3-dinor-TxB(2)-ratio did not significantly change in pregnancy. CONCLUISION Prostacyclin and thromboxane do not seem to play an important role in sodium balance during pregnancy.  相似文献   

17.
18.
Restriction of dietary sodium during gestation has major effects on taste function and anatomy in the offspring. The chorda tympani nerve of offspring that are maintained on sodium-reduced chow throughout life (NaDep) has reduced neurophysiological responses to sodium and altered morphology of its terminal field in the nucleus of the solitary tract. There are many anatomical and physiological similarities between the chorda tympani nerve that innervates taste buds on the anterior tongue and the greater superficial petrosal nerve (GSP) that innervates taste buds on the palate. To determine if the GSP is similarly susceptible to the effects of dietary sodium restriction, the present study examined neurophysiological responses and the terminal field of the GSP in NaDep and control rats. Neurophysiological responses of the GSP to a variety of sodium and non-sodium stimuli did not differ between NaDep and control rats. Furthermore, the volume and shape of the GSP terminal field in the nucleus of the solitary tract did not differ between the groups. Therefore, despite the high degree of functional and anatomical correspondence between the chorda tympani nerve and the GSP, the GSP does not appear to be susceptible to the effects of lifelong dietary sodium restriction.  相似文献   

19.
The iron and ferritin content of rat liver and the species of ferritin present were examined from 4 days before to 3 weeks after birth. 1. Total iron and ferritin iron accumulated rapidly during the last days of gestation and from the second postnatal day underwent a steady depletion. 2. The amount of iron deposited before birth in the liver of each pup varied inversely with litter size and could be increased moderately by injection of iron into the mother before mating. 3. Intraperitoneal injection of iron 1 day after birth doubled the concentration of total iron, ferritin iron and ferritin protein in the liver over the next 24h, but at 3 weeks after birth it raised the very low concentrations of iron and ferritin severalfold. 4. As shown by electrophoretic migration, ferritin and dissociated ferritin subunits prepared from the livers of rats from 4 days before to 3 weeks after birth differed from those of adult liver ferritin and were indistinguishable from those of adult kidney and spleen ferritin. Treatment with iron at 3 weeks of age induced formation of a ferritin with electrophoretic properties resembling those of adult liver. It is concluded that iron given at this stage of development may activate the genetic cistron for adult liver ferritin.  相似文献   

20.
Dietary sodium restriction has profound effects on the development of peripheral taste function and central taste system anatomy. This study examined whether early dietary sodium restriction also affects innervation of taste buds. The number of geniculate ganglion cells that innervate single fungiform taste buds were quantified for the midregion of the tongue in two groups of rats: those fed either a low-sodium diet and those fed a sodium replete diet (control rats) from early prenatal development through adulthood. The same mean number of ganglion cells in developmentally sodium-restricted and control adult rats innervated taste buds on the midregion of the tongue. However, the characteristic relationship of the larger the taste bud, the more neurons that innervate it did not develop in sodium-restricted rats. The failure to form such a relationship in experimental rats was likely due to a substantially smaller mean taste bud volume than controls and probably not to changes in innervation. Further experiments demonstrated that the altered association between number of innervating neurons and taste bud size in restricted rats was reversible. Feeding developmentally sodium-restricted rats a sodium replete diet at adulthood resulted in an increase in taste bud size. Accordingly, the high correlation between taste bud volume and innervation was established in sodium-replete rats. Findings from the current study reveal that early dietary manipulations influence neuron-target interactions; however, the effects of dietary sodium restriction on peripheral gustatory anatomy can be completely restored, even in adult animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号