首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report a new approach for target quantification directly within DNA duplex. Our assay is based on the formation of a new biomolecular structure, the PD-loop. The approach takes advantage of a selective hybridization of a probe to double-stranded DNA (dsDNA), which is locally opened by a pair of bis-PNA oligomers. To optimize the technique, several experimental formats are tested with the use of PNA and oligonucleotide probes. The highest sensitivity is achieved when the hybridized probe is extended and multiply labeled with 125I-dCTP by DNA polymerase via strand displacement in the presence of single-strand binding (SSB) protein. In this case, the PNA-assisted probe hybridization combined with the method of multiphoton detection (MPD) allows to monitor sub-attomolar amounts of the HIV-1 target on the background of unrelated DNA at sub-nCi level of radioactivity. The developed robust methodology is highly discriminative to single mutations, thus being of practical use for DNA analysis.  相似文献   

3.
Phenomenon of the interaction of a double-stranded DNA fragment with an oligonucleotide complementary to the end of the duplex strand was demonstrated to occur via formation of three-stranded DNA structure with an oligonucleotide invasion. It was shown that oligonucleotides complementary to the duplex ends inhibit Holliday junction formation in solutions of homologous linear DNA fragments. This effect depends on the oligonucleotide concentration, sequence and their complementarity to the duplex ends. Formation of three-stranded complexes was demonstrated using radiolabeled oligonucleotides by agarose gel-electrophoresis followed by autoradiography. Analysis of three-stranded DNA structures by chemical cleavage of non-canonical base pairs revealed that oligonucleotide invades into duplex ends via a sequential displacement mechanism and that the level of the invasion may vary considerably.  相似文献   

4.
Preparation and melting of single strand circular DNA loops.   总被引:5,自引:5,他引:0       下载免费PDF全文
A method for preparation of single strand DNA circles of almost arbitrary sequence is described. By ligating two sticky ended hairpins together a linear duplex is formed, closed at both ends by single stranded loops. The melting characteristics of such loops are investigated using optical absorbance and NMR. It is shown by comparison with the corresponding linear sequence (closed circle minus the end loops) that the effects of end fraying and the strand concentration dependence of the melting temperature are eliminated in the circular form. Over the concentration range examined (0.5 to 2.0 micromolar strands), the circular DNA has a monophasic melting curve, while the linear duplex is biphasic, probably due to hairpin formation. Since effects of duplex to single strands dissociation do not contribute to melting of the circular molecules (dumbells), these DNAs present a realistic experimental model for examining local thermal stability in DNA.  相似文献   

5.
Fluorescently labeled oligodeoxyribonucleotides containing a single tract of four successive guanines have been used to study the thermodynamic and kinetic properties of short intermolecular DNA quadruplexes. When these assemble to form intermolecular quadruplexes the fluorophores are in close proximity and the fluorescence is quenched. On raising the temperature these complexes dissociate and there is a large increase in fluorescence. These complexes are exceptionally stable in potassium-containing buffers, and possess Tm values that are too high to measure. Tm values were determined in sodium-containing buffers for which the rate of reannealing is extremely slow; the melting profiles are effectively irreversible, and the apparent melting temperatures are dependent on the rates of heating. The dissociation kinetics of these complexes was estimated by rapidly increasing the temperature and following the time-dependent changes in fluorescence. From these data we have estimated the half-lives of these quadruplexes at 37 degrees C. Addition of a T to the unlabeled end of the oligonucleotide increases quadruplex stability. In contrast, addition of a T between the fluorophore and the oligonucleotide leads to a decrease in stability.  相似文献   

6.
Microcalorimetric studies of DNA duplexes and their component single strands showed that association enthalpies of unfolded complementary strands into completely folded duplexes increase linearly with temperature and do not depend on salt concentration, i.e. duplex formation results in a constant heat capacity decrement, identical for CG and AT pairs. Although duplex thermostability increases with CG content, the enthalpic and entropic contributions of an AT pair to duplex formation exceed that of a CG pair when compared at the same temperature. The reduced contribution of AT pairs to duplex stabilization comes not from their lower enthalpy, as previously supposed, but from their larger entropy contribution. This larger enthalpy and particularly the greater entropy results from water fixed by the AT pair in the minor groove. As the increased entropy of an AT pair exceeds that of melting ice, the water molecule fixed by this pair must affect those of its neighbors. Water in the minor groove is, thus, orchestrated by the arrangement of AT groups, i.e. is context dependent. In contrast, water hydrating exposed nonpolar surfaces of bases is responsible for the heat capacity increment on dissociation and, therefore, for the temperature dependence of all thermodynamic characteristics of the double helix.  相似文献   

7.
PCR反应中利用荧光检测技术对已知位点进行基因分型时常采用荧光标记的寡核苷酸做探针。近年来新兴起的高分辨率熔解曲线技术可以采用非标记的探针对已知位点的SNP(single nucleotide polymorphism)或突变进行基因分型研究。采用非标记探针法对已知位点的基因分型研究具有廉价、快速、简便等特点,因此被大量应用在和疾病、形状等相关的一些多肽位点的研究中。本文较详细地介绍该技术的基本原理和实验中的注意事项。  相似文献   

8.
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide [C28W(1b)] corresponding to the CaM-binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism in which an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the poorer effectiveness of oxidized CaM in activating the Ca2+ pump.  相似文献   

9.
We recently showed that intermolecular DNA triplexes can form during gel electrophoresis when a faster migrating single strand overtakes a slower migrating band containing a duplex of appropriate sequence. We proposed a model to account for the resulting apparent comigration of triplexes with the duplex band when the lifetime of the triplex is much shorter than the time of electrophoresis. The model predicts that short-lived complexes can be detected by a gel-shift assay if the faster migrating component of the complex is labeled, a slower migrating component is in excess, and the complex itself migrates more slowly than either of the components. In this case the labeled component, after dissociation from the complex, overtakes a slower migrating band of the free, unlabeled second component and can be captured by the unlabeled component and again retarded; after dissociation of the newly formed complex the cycle is repeated. If the concentration of unlabeled component in the band is larger than some critical value (c(cr)), most of the labeled component becomes trapped in this band during the entire time of gel electrophoresis, thus effectively comigrating with the slower migrating unlabeled component. We call this mechanism of comigration "cyclic capture and dissociation" (CCD). Here we present a quantitative analysis of the model of CCD comigration which predicts that CCD comigration can be used not only for the detection of relatively short-lived complexes, but also for estimation of the specificity of complex formation.  相似文献   

10.
Many DNA-probe assays utilize oligonucleotide-coated microparticles for capture of complementary nucleic acids from solution. During development of these assays, as well as in other particle-based nucleic acid applications, it is useful to know both the amount of duplex formation expected under various experimental conditions and the coating density of the capture oligonucleotide on the particle surface. We examined the simplest form of a DNA-probe microparticle assay: hybridization of a particle-bound capture oligonucleotide to its solution-phase complement. Fluorescein-labeled solution-phase oligonucleotide was hybridized to varying amounts of particles, and the amount of labeled oligonucleotide remaining in solution at equilibrium was measured. We present a simple two-state, all-or-none model for bimolecular hybridization of non-self-complementary sequences that can be used to calculate the equilibrium dissociation constant ( Kd ) from hybridization data. With experimental conditions where both the Kd value and the concentration of capture probe in the reaction are small relative to the concentration of labeled complementary oligonucleotide in the reaction, density of the capture probe on the particle's surface can also be determined. Kd values for particle-based hybridization were different from those obtained from solution-phase thermodynamic parameters. At higher temperatures, hybridization on particles was more efficient than hybridization in solution.  相似文献   

11.
The effect of surface probe density on DNA hybridization   总被引:25,自引:14,他引:11       下载免费PDF全文
The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for the analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density effects may account for the observed variation in target-capture rates, which have previously been attributed to thermodynamic effects.  相似文献   

12.
Cationic 5,10,15,20-tetrakis (1-methyl-4-pyridyl) porphyrin was tested as a delivery agent for oligonucleotides. By using fluorescence microimaging, it has been shown that complexation of the porphyrin to the phosphorothioate analog of dT(15) labeled by rhodamine enabled its nonendocytic penetration into the cell and regular distribution in the cytoplasm and preferentially into the nucleus. Time-resolved microfluorescence spectroscopy revealed that the oligonucleotide integrity was kept. A small fraction of the porphyrin molecules seems to undergo change of the binding mode after internalization, probably due to duplex formation between the oligonucleotide and its cellular target sequences, or due to dissociation of the porphyrin from the oligonucleotide and subsequent interactions in the cellular environment.  相似文献   

13.
Primary hepatocyte culture has been used to demonstrate that the cortisol-apolipoprotein A-I complex does not affect the DNA and protein biosynthesis rates, whereas the tetrahydrocortisol-apolipoprotein A-I complex (THC-apoA-I) substantially increases the rates of 3H-thymidine and 14C-leucine incorporation into DNA and protein, respectively. Small-angle X-ray scattering data show that only THC-apoA-I effectively interacts with eukaryotic DNA, which is accompanied by local DNA melting. The (GCC)n repeat, a component of many human and other eukaryotic genes, is the most probable region of the interaction of this complex with DNA. An oligonucleotide (duplex) of this type has been synthesized. Its interaction with THC-apoA-I yields a larger complex, which breaks up, giving rise to complementary oligonucleotide strands. They also interact with THC-apoA-I. The equilibrium kinetics of this multiphase process is described. The interaction of the cortisol-apolipoprotein A-I complex with the duplex is less specific and does not cause its breakup or the formation of complementary oligonucleotides.  相似文献   

14.
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

15.
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.  相似文献   

16.
We have designed a doubly thiazole orange labeled nucleoside showing high fluorescence intensity for a hybrid with the target DNA and effective quenching for a single-stranded state. Knowing how much the fluorescence emission and quenching of this probe depend on the probe sequence and why there is such a sequence dependence is important for effective probe design, we synthesized more than 30 probe sequences and measured their fluorescence intensities. When the probe hybridized with the target DNA strands, there was strong emission, whereas the emission intensity was much weaker before hybridization; however, self-dimerization of probes suppressed fluorescence quenching. In particular, the G/C base pairs neighboring the labeled nucleotide in a self-dimeric structure resulted in a low quenching ability for the probe before hybridization. On the other hand, mismatched base pair formation around the labeled site decreased the fluorescence intensity because the neighboring sequence is the binding site of the tethered thiazole orange dyes. The hybridization enhanced the fluorescence of the probe even when the labeled nucleotide was located at the end of the probe strand; however, the partial lack of duplex structure resulted in a decrease in the fluorescence intensity of the hybrid.  相似文献   

17.
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.  相似文献   

18.
Adaptation of DNA melting analysis for polymorphic single nucleotides (SNPs) genotyping using an unlabeled oligonucleotide probe for polymorphic DNAs under the presence of fluorescent DNA binding dye necessitates a reaction condition where the probe efficiently associates with a target strand that is PCR amplified. We present experimental evidence that application of an unlabeled probe to a dilute PCR amplicon provides a condition such that the fluorescent signals gained subsequently by probe melting are sufficient to discriminate allelic identities. This approach is best exploited by adapting the multiplexing PCR technique in order to cover multiple SNPs for given samples. 3′-end modification of the probe is unnecessary as the amplicon dilution step provides a way of inactivating the polymerase through divalent cation chelation. With the use of low-cost reagents and ordinary laboratory equipment, this method offers a rapid, simple and cost-efficient way of SNP genotyping.  相似文献   

19.
20.
A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (Kd < 1 nM, koff < 0.01 s−1) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1–100 pM and 23–46°C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号