首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble proline endopeptidase (EC 3.4.21.26) activity was measured by a fluorometric assay in eight human brain areas (caudate nucleus, lateral globus pallidus, medial globus pallidus, substantia nigra-zona compacta, substantia nigra-zona reticulata, frontal cortex-Brodmann area 10, temporal cortex-Brodmann area 38, and hippocampus), in 10 control and 10 Huntington's disease brains. An abnormally low activity (22% of control activity) was found in the caudate nucleus of Huntington's disease brains; significantly decreased activity was also detected in the lateral globus pallidus and medial globus pallidus (37% and 40% of control, respectively).  相似文献   

2.
Increase in Kynurenic Acid in Huntington''s Disease Motor Cortex   总被引:2,自引:2,他引:0  
Huntington's disease is a neurological disorder characterised by a progressive chorea and dementia. Recent evidence has suggested that dysfunction involving endogenous excitatory amino acids may be important in the pathogenesis of this disease. Following the recent demonstration that kynurenic acid is present in the brain, we examined the levels in various areas of brain from patients who died with Huntington's disease and from age/sex-matched controls. Blocks (100-500 mg) of cortex (Brodmann's areas 4 and 10) and caudate nucleus and globus pallidus (lateral and medial parts) were obtained from the Cambridge Brain Bank. The tissue was then processed for the extraction and analysis of kynurenic acid. Whereas no differences in the content of kynurenic acid were observed in the caudate nucleus, lateral or medial globus pallidus, or prefrontal cortex (area 10) between controls' brains and those from patients who died with Huntington's disease, there was a 94% (p less than 0.01; n = 5) increase in the kynurenic acid content in the motor cortex (area 4) from Huntington's disease brains, relative to those of controls. Some time ago we suggested that a subtle change in the relative concentrations of quinolinic and kynurenic acids might be important in the pathogenesis of neurodegeneration. It is possible that the observation of raised kynurenic acid levels supports this supposition. Further work is now in progress to determine whether the change in kynurenic acid is a primary effect or a compensatory response to an increase in excitatory activity.  相似文献   

3.
Ceruloplasmin (CP) is a 132kd cuproprotein which, together with transferrin, provides the majority of anti-oxidant capacity in serum. Increased iron deposition and lipid peroxidation in the basal ganglia of subjects with hereditary CP deficiency suggest that CP may serve as an anti-oxidant in the brain as well. The present study compared CP immunoreactivity in brain specimens from normal controls and subjects with neurodegenerative disorders (Alzheimer's disease [AD], Parkinson's disease [PD], progressive supranuclear palsy [PSP], and Huntington's disease [HD]) (n = 5 per group). The relative intensity of neuronal CP staining and the numbers of CP-stained neurons per 25x microscope field were determined in hippocampus (CA1, subiculum, and parahippocampal gyrus), parietal cortex, frontal cortex, substantia nigra, and caudate. CP was detected in both neurons and astrocytes in all specimens, and in senile plaques and occasional neurofibrillary tangles in AD brain. Neuronal CP staining intensity tended to increase in most AD brain regions, but was statistically significant vs controls only in the CA1 region of hippocampus (p = .016). Neuronal CP staining in brain specimens from other neurodegenerative disorders showed a slight but nonsignificant increase vs controls. The numbers of CP-stained neurons per field did not differ between the various neurodegenerative disorders and controls. These results suggest that a modest increase in neuronal CP content is present in the AD brain, and lesser elevations in neuronal CP occur in the other neurodegenerative disorders in this study. Though CP functions as both an acute phase protein and an anti-oxidant in peripheral tissues, whether it does so in the brain remains to be determined.  相似文献   

4.
We investigated histamine concentration in post-mortem brain samples of patients with Parkinson's disease (PD, n = 24), multiple system atrophy (MSA, n = 8) and age-matched controls (n = 27). Histamine concentrations were significantly increased in the putamen (to 159% of the control mean), substantia nigra pars compacta (to 201%), internal globus pallidus (to 234%) and external globus pallidus (to 200%), i.e. in areas which play a crucial role in the motor behaviour and which show typical functional alterations in PD. In MSA no significant differences were seen. Tele-methylhistamine (histamine metabolite) concentrations were unchanged in PD. These results indicate that histamine concentration, but not its metabolism is increased in PD, but not in MSA. This finding may have implications in developing new drug therapies for PD and in differential diagnosis between PD and MSA.  相似文献   

5.
Levels of iron, copper, zinc, manganese, and lead were measured by inductively coupled plasma spectroscopy in parkinsonian and age-matched control brain tissue. There was 31-35% increase in the total iron content of the parkinsonian substantia nigra when compared to control tissue. In contrast, in the globus pallidus total iron levels were decreased by 29% in Parkinson's disease. There was no change in the total iron levels in any other region of the parkinsonian brain. Total copper levels were reduced by 34-45% in the substantia nigra in Parkinson's disease; no difference was found in the other brain areas examined. Zinc levels were increased in substantia nigra in Parkinson's disease by 50-54%, and the zinc content of the caudate nucleus and lateral putamen was also raised by 18-35%. Levels of manganese and lead were unchanged in all areas of the parkinsonian brain studied when compared to control brains, except for a small decrease (20%) in manganese content of the medial putamen. Increased levels of total iron in the substantia nigra may cause the excessive formation of toxic oxygen radicals, leading to dopamine cell death.  相似文献   

6.
Decreased Ferritin Levels in Brain in Parkinson''s Disease   总被引:5,自引:2,他引:3  
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin.  相似文献   

7.
The regional distributions of iron, copper, zinc, magnesium, and calcium in parkinsonian brains were compared with those of matched controls. In mild Parkinson's disease (PD), there were no significant differences in the content of total iron between the two groups, whereas there was a significant increase in total iron and iron (III) in substantia nigra of severely affected patients. Although marked regional distributions of iron, magnesium, and calcium were present, there were no changes in magnesium, calcium, and copper in various brain areas of PD. The most notable finding was a shift in the iron (II)/iron (III) ratio in favor of iron (III) in substantia nigra and a significant increase in the iron (III)-binding, protein, ferritin. A significantly lower glutathione content was present in pooled samples of putamen, globus pallidus, substantia nigra, nucleus basalis of Meynert, amygdaloid nucleus, and frontal cortex of PD brains with severe damage to substantia nigra, whereas no significant changes were observed in clinicopathologically mild forms of PD. In all these regions, except the amygdaloid nucleus, ascorbic acid was not decreased. Reduced glutathione and the shift of the iron (II)/iron (III) ratio in favor of iron (III) suggest that these changes might contribute to pathophysiological processes underlying PD.  相似文献   

8.
Abstract: S -Adenosylmethionine is an essential ubiquitous metabolite central to many biochemical pathways, including transmethylation and polyamine biosynthesis. Reduced CSF S -adenosylmethionine levels in Alzheimer's disease have been reported; however, no information is available regarding the status of S -adenosylmethionine or S -adenosylmethionine-dependent methylation in the brain of patients with this disorder. S -Adenosylmethionine concentrations were measured in postmortem brain of 11 patients with Alzheimer's disease. We found decreased levels of S -adenosylmethionine (−67 to −85%) and its demethylated product S -adenosylhomocysteine (−56 to −79%) in all brain areas examined (cerebral cortical subdivisions, hippocampus, and putamen) as compared with matched controls (n = 14). S -Adenosylmethionine and S -adenosylhomocysteine levels were normal in occipital cortex of patients with idiopathic Parkinson's disease (n = 10), suggesting that the decreased S -adenosylmethionine levels in Alzheimer's disease are not simply a consequence of a chronic, neurodegenerative condition. Reduced S -adenosylmethionine levels could be due to excessive utilization in polyamine biosynthesis. The severe reduction in levels of this essential biochemical substrate would be expected to compromise seriously metabolism and brain function in patients with Alzheimer's disease and may provide the basis for the observations of improved cognition in some Alzheimer's patients following S -adenosylmethionine therapy.  相似文献   

9.
Abstract: The brain requires a ready supply of iron for normal neurological function, but free iron is toxic. Consequently, iron bioavailability must be stringently regulated. Recent evidence has suggested that the brain iron regulatory system is dysfunctional in neurological disorders such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). A key component of the iron regulatory system in the brain is ferritin. Ferritin consists of 24 subunits, which are distinguished as either a heavy-chain (H) or light-chain (L) isoform. These peptide subunits are genetically and functionally distinct. Thus, the ability to investigate separately the types of ferritin in brain should provide insight into iron management at both the cellular and the molecular level. In this study, the ratio of isoferritins was determined in select regions of adult elderly AD and PD human brains. The H-rich ferritin was more abundant in the young brain, except in the globus pallidus where the ratio of H/L ferritin was 1:1. The balance of H/L isoferritins was influenced by age, brain region, and disease state. With normal aging, both H and L ferritin increased; however, the age-associated increase in isoferritins generally failed to occur in AD and PD brain tissue. The imbalance in H/L isoferritins was disease and region specific. For example, in frontal cortex, there was a dramatic (fivefold) increase in the ratio of H/L ferritin in AD brains but not in PD brains. In PD, caudate and putamen H/L ratios were higher than in AD and the elderly control group. The analysis of isoferritin expression in brain provides insight into regional iron regulation under normal conditions and suggests a loss of ability to maintain iron homeostasis in the two disease states. This latter observation provides further evidence of dysfunction of iron homeostatic mechanisms in AD and PD and may contribute significantly to understanding the underlying pathogenesis of each, particularly in relation to iron-induced oxidative damage.  相似文献   

10.
BACKGROUND: The basal ganglia contain the highest levels of iron in the brain and post-mortem studies indicate a disruption of iron metabolism in the basal ganglia of patients with neurodegenerative disorders such as Alzheimer's disease (AD) and Huntington's disease (HD). Iron can catalyze free radical reactions and may contribute to oxidative damage observed in AD and HD brain. Magnetic resonance imaging (MRI) can quantify transverse relaxation rates, which can be used to quantify tissue iron stores as well as evaluate increases in MR-visible water (an indicator of tissue damage). METHODS: A magnetic resonance imaging (MRI) method termed the field dependent relaxation rate increase (FDRI) was employed which quantifies the iron content of ferritin molecules (ferritin iron) with specificity through the combined use of high and low field-strength MRI instruments. Three basal ganglia structures (caudate, putamen and globus pallidus) and one comparison region (frontal lobe white matter) were evaluated. Thirty-one patients with AD and a group of 68 older control subjects, and 11 patients with HD and a group of 27 adult controls participated (4 subjects overlap between AD and HD controls). RESULTS: Compared to their respective normal control groups, increases in basal ganglia FDRI levels were seen in both AD and HD. FDRI levels were significantly increased in the caudate (p = 0.007) and putamen (p = 0.008) of patients with AD with a trend toward an increase in the globus pallidus (p = 0.13). In the patients with HD, all three basal ganglia regions showed highly significant FDRI increases (p<0.001) and the magnitude of the increases were 2 to 3 times larger than those observed in AD versus control group comparison. For both HD andAD subjects, the basal ganglia FDRI increase was not a generalized phenomenon, as frontal lobe white matter FDRI levels were decreased in HD (p = 0.015) and remained unchanged in AD. Significant low field relaxation rate decreases (suggestive of increased MR-visible water and indicative of tissue damage) were seen in the frontal lobe white matter of both HD and AD but only the HD basal ganglia showed such decreases. CONCLUSIONS: The data suggest that basal ganglia ferritin iron is increased in HD and AD. Furthermore, the increased iron levels do not appear to be a byproduct of the illness itself since they seem to be present at the onset of the diseases, and thus may be considered a putative risk factor. Published post-mortem studies suggest that the increase in basal ganglia ferritin iron may occur through different mechanisms in HD and AD. Consistent with the known severe basal ganglia damage, only HD basal ganglia demonstrated significant decreases in low field relaxation rates. MRI can be used to dissect differences in tissue characteristics, such as ferritin iron and MR-visible water, and thus could help clarify neuropathologic processes in vivo. Interventions aimed at decreasing brain iron levels, as well as reducing the oxidative stress associated with increased iron levels, may offer novel ways to delay the rate of progression and possibly defer the onset of AD and HD.  相似文献   

11.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

12.
The activity of the dipeptidyl carboxypeptidase, angiotensin converting enzyme, was assayed in several brain regions of patients dying with Alzheimer's disease and compared to that of appropriately age-matched controls. Enzyme activity was found to be elevated by 44% and 41% in the medial hippocampus and parahippocampal gyrus, respectively, and by 27% and 29% in the frontal cortex (area 10 of Brodman) and caudate nucleus, respectively, in Alzheimer's disease patients. Converting enzyme activity did not differ from controls in the nucleus accumbens, substantia nigra, temporal cortex, anterior or posterior hippocampus, amydgala, and septal nuclei.  相似文献   

13.
Abstract: Galanin is a peptide that is associated with cholinergic neurons of the basal forebrain and, thus, of interest for the neuropathology of Alzheimer's disease. In the present study, human galanin-like immunoreactivity was measured in postmortem human cerebral cortical tissues by using a homologous radioimmunoassay. In an initial study, six cerebral cortical regions were evaluated from nine elderly controls, 13 neuropathologically verified Alzheimer's disease patients, and 19 elderly schizophrenics. A significant 65% increase in galanin was found in frontal cortex Brodmann area 8 of Alzheimer's disease patients compared with controls. In contrast, cerebral cortical tissues from elderly schizophrenics were not different from those from elderly controls in any region. In a second study, 10 cerebral cortical regions were evaluated from 50 neuropathologically verified Alzheimer's disease patients and nine elderly controls. Concentrations of galanin were increased significantly 26–61% in six of 10 cerebral cortical regions examined (Brodmann areas F8, F44, T20, T21, T36, and P22). Purification of brain extracts by size-exclusion Sephadex G-50 chromatography revealed that human galanin-like immunoreactivity eluted in two peaks of different molecular weights. These studies reveal increased concentrations of galanin in the cerebral cortex of Alzheimer's disease, similar to previous findings in basal forebrain tissue. Because galanin inhibits cholinergic neurotransmission, these findings may have important implications in the understanding of Alzheimer's disease neuropathology and associated cognitive deficits.  相似文献   

14.
A novel pituitary protein, designated as 7B2, recently purified in our laboratory was measured using a specific radioimmunoassay in conjunction with immuno-affinity extraction, in cerebrospinal fluid (CSF) and in plasma obtained from normal volunteers. The mean concentrations of immunoreactive (IR)-7B2 were 2154 pg/ml in CSF and 29 pg/ml in plasma. Studies by SDS-poly-acrylamide gel electrophoresis revealed that both CSF IR-7B2 and plasma IR-7B2 have an apparent molecular weight of around 20,000-21,000 as previously observed in various rat tissues. IR-7B2 was also measured in various brain regions obtained from control subjects and patients with Alzheimer's disease. IR-7B2 was widely distributed in the human brain, with the highest concentrations in substantia nigra and caudate. IR-7B2 brain concentrations were found to be similar between control subjects and patients with Alzheimer's disease. Gel permeation chromatography of extracts of various brain regions revealed two major peaks with apparent molecular weights of 45,000-50,000 and 11,000-16,000 in hypothalamus, caudate, frontal cortex, hippocampus, putamen and locus coeruleus, and only one peak with an apparent molecular weight of 14,000-16,000 in substantia nigra and globus pallidus. These data suggest that this novel pituitary protein may play a role of consequence perhaps as a neurotransmitter or as a neuromodulator in the human central nervous system.  相似文献   

15.
目的:探索帕金森病(PD)的磁敏感加权成像(SWI)的表现。方法:34例帕金森病患者作为病例组和30例正常人作为对照组,采用GE1.5T磁共振成像系统,行常规的快速自旋回波T1、T2加权像后,加扫三维磁敏感加权成像覆盖基底节区及中脑。使用SWI后处理软件在校正相位图上两次测量双侧尾状核头、苍白球、壳核、黑质、红核的相位值,最终的相位值取两次测量的平均值。结果:病例组患者黑质、壳核的相位值较对照组明显降低,差异具有统计学意义(P<0.05),PD患者黑质及壳核铁沉积增加。病例组壳核的相位值与PD病程之间存在负相关。对照组中尾状核头、壳核、黑质相位值左侧低于右侧。结论:SWI是显示PD患者脑内铁沉积的有效的检查方法。  相似文献   

16.
It has been proposed that mitochondrial dysfunction and excitotoxic mechanisms lead to oxidative damage in the brain of Huntington;s disease patients. We sought evidence that increased oxidative damage occurs by examining postmortem brain material from patients who had died with clinically and pathologically diagnosed Huntington's disease. Oxidative damage was measured using methods that have already demonstrated the presence of increased oxidative damage in Parkinson's disease, Alzheimer's disease, and senile dementia of the Lewy body type. No alterations in the levels of lipid peroxidation (as measured by lipid peroxides and thiobarbituric acid-malondialdehyde adducts) were found in the caudate nucleus, putamen, or frontal cortex of patients with Huntington's disease compared with normal controls. Similarly, there were no elevations in the levels of 8-hydroxyguanine or of a wide range of other markers of oxidative DNA damage. Levels of protein carbonyls in these tissues were also unaltered. Our data suggest that oxidative stress is not a major component of the degenerative processes occurring in Huntington's disease, or at least not to the extent that occurs in other neurodegenerative disorders.  相似文献   

17.
Recently, iron deficiency has been connected with a heterogeneous accumulation of manganese in the rat brain. The striatum is particularly vulnerable, for there is a significant negative correlation between accumulated manganese and gamma-aminobutyric acid levels. The effect of dietary iron deficiency on the distribution of zinc and copper, two other divalent metals with essential neurobiological roles, is relatively unexplored. Thus, the primary goal of this study was to examine the effect of manipulating dietary iron and manganese levels on the concentrations of copper, iron, manganese and zinc in five rat brain regions as determined with inductively coupled plasma mass spectrometry analysis. Because divalent metal transporter has been implicated as a transporter of brain iron, manganese, and to a lesser extent zinc and copper, another goal of the study was to measure brain regional changes in transporter levels using Western blot analysis. As expected, there was a significant effect of iron deficiency (P < 0.05) on decreasing iron concentrations in the cerebellum and caudate putamen; and increasing manganese concentrations in caudate putamen, globus pallidus and substantia nigra. Furthermore, there was a significant effect of iron deficiency (P < 0.05) on increasing zinc concentration and a statistical trend (P = 0.08) toward iron deficiency-induced copper accumulation in the globus pallidus. Transporter protein in all five regions increased due to iron deficiency compared to control levels (P < 0.05); however, the globus pallidus and substantia nigra revealed the greatest increase. Therefore, the globus pallidus appears to be a target for divalent metal accumulation that is associated with dietary iron deficiency, potentially caused by increased transporter protein levels.  相似文献   

18.
Autopsy Samples of Alzheimer''s Cortex Show Increased Peroxidation In Vitro   总被引:12,自引:3,他引:9  
The formation of thiobarbituric acid-reactive products was measured as an index of peroxidation by oxygen free radicals in homogenates of frontal cortex and cerebellum from brains taken at autopsy and verified histologically as being Alzheimer's (n = 6) or normal (n = 6). Compared with controls, basal peroxidation is significantly higher in Alzheimer's cortex, and this difference is also evident in the presence of exogenous iron. Peroxidation in cerebellum and levels of total glutathione, RNA, and DNA in cortex and cerebellum do not differ significantly between Alzheimer's brain and controls. Iron-induced peroxidation in cortex is reduced by the lazaroid U-74500A, with calculated IC50 values that are significantly higher in Alzheimer's samples (10 microM) than in controls (2.5 microM). These observations suggest that cerebral cortex from Alzheimer's patients differs from controls with respect to in vitro peroxidation.  相似文献   

19.
Treatment of common marmosets with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 1-4 mg/kg for up to 4 days) caused a profound parkinsonian state. Ten days from the start of MPTP treatment, all animals showed marked motor impairment, consisting of bradykinesia and akinesia, limb rigidity, postural abnormalities, loss of vocalisation and blink reflex, and, on occasions, postural tremor. Measurement of caudate-putamen monoamine content at this time showed a profound loss in 3,4-dihydroxyphenylethylamine, homovanillic acid, and 3,4-dihydroxyphenylacetic acid concentrations. Measurement of neuropeptide concentrations in the caudate-putamen, internal and external segments of the globus pallidus, nucleus accumbens, substantia nigra, frontal cortex, and hippocampus showed met-enkephalin, leu-enkephalin, and cholecystokinin (CCK-8) concentrations to be unaffected by MPTP treatment. There was a small decrease in the substance P content of frontal cortex, but otherwise the content of this neuropeptide was unaltered. Parkinsonism in the marmoset, induced by MPTP treatment 10 days earlier, does not alter neuropeptide concentrations in the manner observed in Parkinson's disease.  相似文献   

20.
Abstract: In Alzheimer's disease (AD) there are dramatic reductions in human corticotropin-releasing factor (hCRF) concentration and reciprocal increases in CRF receptor density in the cortex. hCRF-binding protein (hCRF-BP), hCRF/hCRF-BP complex, and "free" hCRF were measured in 10 brain regions from control and AD postmortem human tissue. In the control brains hCRF-BP was heterogenously distributed and levels were at least 10-fold higher on a molar basis than total hCRF levels, suggesting that one major role of the binding protein is to limit the actions of hCRF at the hCRF receptors. Concordant with this hypothesis, the percentage of total hCRF that was in the bound inactive form ranged from 65 to 90% in most areas examined, with the exception of the caudate and globus pallidus where only 15 and 40% were complexed, respectively. hCRF-BP concentrations were similar in the control and AD groups except for Brodmann area (BA) 39 where there was a small but significant decrease in the AD group. Complexed hCRF levels were significantly decreased in BA 8/BA 9, BA 22, BA 39, nucleus basalis, and globus pallidus in the Alzheimer's group and free hCRF levels were significantly decreased only in three brain areas, BA 4, BA 39, and caudate; substantial (40%) but nonsignificant decreases were also noted in BA 8/BA 9 and BA 22. These data demonstrate that (1) a large proportion of the total hCRF in human brain is complexed to hCRF-BP and thus unavailable for hCRF receptor activation, (2) reductions in total hCRF alone do not necessarily predict reductions in bioactive free hCRF, and (3) total hCRF levels and hCRF-BP levels appear to be the main factors determining the quantity of bound and free hCRF in human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号