首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-α-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-α-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.  相似文献   

2.
This study provides first-hand proteomic data on the survival strategy of Anabaena sp. PCC 7120 when subjected to long-term iron-starvation conditions. 2D-gel electrophoresis followed by MALDI-TOF/MS analysis of iron-deficient Anabaena revealed significant and reproducible alterations in ten proteins, of which six are associated with photosynthesis and respiration, three with the antioxidative defense system, and the last, hypothetical protein all1861, conceivably connected with iron homeostasis. Iron-starved Anabaena registered a reduction in growth, photosynthetic pigments, PSI, PSII, whole-chain electron transport, carbon and nitrogen fixation, and ATP and NADPH content. The kinetics of hypothetical protein all1861 expression, with no change in expression until day 3, maximum expression on the 7th day, and a decline in expression from the 15th day onward, coupled with in silico analysis, suggested its role in iron sequestration and homeostasis. Interestingly, the up-regulated FBP-aldolase, Mn/Fe-SOD, and all1861 all appear to assist the survival of Anabeana subjected to iron-starvation conditions. Furthermore, the N2-fixation capabilities of the iron-starved Anabaena encourage us to recommend its application as a biofertilizer, particularly in iron-limited paddy soils.  相似文献   

3.
4.
5.
Gloeothece sp. PCC 6909 is a unicellular N(2)-fixing cyanobacterium with a well defined and highly developed sheath surrounding its cells. A sheathless mutant of this strain was previously obtained by chemical mutagenesis and, although lacking the sheath, it releases large amounts of polysaccharides into the culture medium. To provide a global understanding on the metabolic differences between the two phenotypes, the proteomes of the wild type and mutant were analyzed using a cross-species proteomics approach coupled with iTRAQ isobaric tagging technology, since their genome sequences are not yet available. Effects arising from the presence/absence of nitrate and sulfur are presented as two metabolically directed follow-up iTRAQ studies. These nutrients are believed to play a major role in Gloeothece's metabolism, including the production of extracellular polymeric substances - EPS. 454, 124, and 53 proteins were identified and reliably quantified using homology anchoring approaches for iTRAQ previously described. The results obtained strongly suggest that the chemical mutagenesis affected the regulation of a number of key cellular processes, as revealed by the significant fold changes observed for proteins covering a large spectrum of functional groups. Moreover, they provide new insights on the adaptations of Gloeothece cells to nitrate-deficiency and sulfur-limitation.  相似文献   

6.
7.
Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes that oxidatively cleave carotenoids into apocarotenoids. Dioxygenases have been identified in plants and animals and produce a wide variety of cleavage products. Despite what is known about apocarotenoids in higher organisms, very little is known about apocarotenoids and CCDs in microorganisms. This study surveyed cleavage activities of ten putative carotenoid cleavage dioxygenases from five different cyanobacteria in recombinant Escherichia coli cells producing different carotenoid substrates. Three CCD homologs identified in Nostoc sp. PCC 7120 were purified, and their cleavage activities were investigated. Two of the three enzymes showed cleavage of beta,beta-carotene at the 9,10 and 15,15' positions, respectively. The third enzyme did not cleave full-length carotenoids but cleaved the apocarotenoid beta-apo-8'-carotenal at the 9,10 position. 9,10-Apocarotenoid cleavage specificity has previously not been described. The diversity of carotenoid cleavage activities identified in one cyanobacteria suggests that CCDs not only facilitate the degradation of photosynthetic pigments but generate apocarotenals with yet to be determined biological roles in microorganisms.  相似文献   

8.
Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.  相似文献   

9.
10.
Lipoxygenases (LOXs) consist of a class of enzymes that catalyze the regio- and stereospecific dioxygenation of polyunsaturated fatty acids. Current reports propose that a conserved glycine residue in the active site of R-lipoxygenases and an alanine residue at the corresponding position in S-lipoxygenases play a crucial role in determining the stereochemistry of the product. Recently, a bifunctional lipoxygenase with a linoleate diol synthase activity from Nostoc sp. PCC7120 with R stereospecificity and the so far unique feature of carrying an alanine instead of the conserved glycine in the position of the sequence determinant for chiral specificity was identified. The recombinant carboxy-terminal domain was purified after expression in Escherichia coli. The ability of the enzyme to use linoleic acid esterified to a bulky phosphatidylcholine molecule as a substrate suggested a tail-fist binding orientation of the substrate. Site directed mutagenesis of the alanine to glycine did not cause alterations in the stereospecificity of the products, while mutation of the alanine to valine or isoleucine modified both regio- and enantioselectivity of the enzyme. Kinetic measurements revealed that substitution of Ala by Gly or Val did not significantly influence the reaction characteristics, while the A162I mutant showed a reduced vmax. Based on the mutagenesis data obtained, we suggest that the existing model for stereocontrol of the lipoxygenase reaction may be expanded to include enzymes that seem to have in general a smaller amino acid in R and a bulkier one in S lipoxygenases at the position that controls stereospecificity.  相似文献   

11.
The cellular and subcellular localization of FtsZ, a bacterial cell division protein, were investigated in vegetative cells of the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. We show by using immunogold-transmission electron microscopy that FtsZ forms a ring structure in a filamentous cyanobacterium, similar to observations in unicellular bacteria and chloroplasts. This finding, that the FtsZ in a filamentous cyanobacterium accumulates at the growing edge of the division septa leading to the formation of the typical prokaryotic Z-ring arrangement, is novel. Moreover, an apparent cytoplasmic distribution of FtsZ occurred in vegetative cells. During the transition of vegetative cells into terminally differentiated heterocysts the cytoplasmic FtsZ levels decreased substantially. These findings suggest a conserved function of FtsZ among prokaryotes, including filamentous cyanobacteria with cell differentiation capacity, and possibly a role of FtsZ as a cytoskeletal component in the cytoplasm.  相似文献   

12.
13.
Azo dyes have become a threat to public health because of its toxicity and carcinogenicity. Azoreductase enzyme plays a pivotal role in the degradation of azodyes released by industrial effluents and other resources. The degradation pathway has to be studied in detail for increasing the activity of azoreductase and for better degradation of azo dyes. But the data available on cyanobacterial azoreductase enzyme and its degradation pathway are still very less. Therefore the present work explored the azoreductase pathway of the cyanobacterium Nostoc sp. PCC7120 for better understanding of the degradation pathway and the other accessory interacting proteins involved. The accessory interacting proteins of azoreductase from cyanobacterium Nostoc sp. PCC7120 were obtained from STRING database. The proteins do not have a comprehensive three dimensional structure and are hypothetical. The secondary structure and functional analysis indicated that the proteins are all soluble proteins, without disulphide bonds and have alpha helices only. The structural prediction and docking study showed that alr2106, alr1063 and alr2326 have best docking result which tally with the STRING database confidence score and thus these proteins could possibly enhance the azoreductase activity and better dye degradation. These results will pave way for further increase in azoreductase activity and for better understanding of the dye degradation pathway.  相似文献   

14.
Dou  Junfeng  Qin  Wei  Ding  Aizhong  Liu  Xiang  Zhu  Yi 《Applied microbiology and biotechnology》2017,101(23):8365-8377

This study focused on the protein expression of a Microbacterium sp. strain that utilized various concentrations of benzo(a)pyrene (BaP) as the sole source of carbon and energy under anaerobic conditions. A total of 1539 protein species were quantified by isobaric tags for relative and absolute quantitation (iTRAQ) coupled with LC-MS/MS. GO, COG, and pathway enrichment analysis showed that most proteins demonstrated catalytic and binding functions and were mainly involved in metabolic processes, cellular processes, and single-organism processes. Sixty-two proteins were found in their abundances in BaP-stress conditions different from normal conditions. These proteins function in the metabolic pathways; the biosynthesis of secondary metabolites, the biosynthesis of antibiotics, microbial metabolism in diverse environments, carbon metabolism, and the biosynthesis of amino acids were markedly altered. Furthermore, enoyl-CoA hydratase was proposed to be a key protein during BaP removal of the Microbacterium sp. strain. This study provides a powerful platform for the further exploration of BaP removal, and the differentially expressed proteins provide insight into the mechanism of the BaP removal pathway.

  相似文献   

15.
16.

Background  

The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively.  相似文献   

17.
《BBA》2023,1864(4):148993
Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.  相似文献   

18.
19.
Anabaena is a model to analyze the evolutionary development of plastids, cell differentiation, and the regulation of nitrogen fixation. Thereby, the outer membrane proteome is the place of sensing environmental differences and during plastid development, systems for intracellular communication had to be added to the proteome of this membrane. We present a protocol for the isolation of the outer membrane from Anabaena and the analysis of the proteome using different tools. 55 proteins were identified.  相似文献   

20.
Phytochelatins (PCs) are well known as the heavy metal-detoxifying peptides in higher plants, eukaryotic algae, fungi, and nematode. In contrast, neither PCs nor PC synthase genes have ever been identified in any prokaryotes. The genome sequences for the cyanobacterium Nostoc sp. PCC 7120 were recently completed and allowed us to identify a gene encoding a PC synthase-like protein, termed alr0975. The predicted product of alr0975 contains the conserved N-terminal domain but not the variable C-terminal domain found in eukaryotic PC synthases. The recombinant alr0975 protein strongly catalyzed the first step of PC synthesis, in which glutathione (GSH) is converted to gamma-glutamylcysteine (gamma-EC), although the protein only weakly catalyzed the second step of PC synthesis, namely the transfer of gamma-EC moiety to an acceptor GSH molecule to form PC(2). These results suggest alr0975 protein may be a more primitive form of the PC synthases found in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号