首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The objective of this study was to determine the effect of induction medium osmolality on embryogenesis and green plant production in wheat and triticale. Isolated microspores of wheat and triticale were subjected to a range of osmolality (300–500 mOsm kg?1) using mannitol. In both species, the maximum number of embryo-like structures (ELS) and green plants were obtained at 350 mOsm kg?1 when the induction medium was supplemented with 9.1 g L?1 of mannitol. A sharp decline in microspore response was observed at higher osmolality. These results demonstrate the effect of osmolality on induction of ELS and production of green plants indicating that the process of microspore embryogenesis can be improved in wheat and triticale by increasing osmolality of the induction medium to 350 mOsm kg?1.  相似文献   

2.
Low frequency of green plant production and albinism limits the use of isolated microspore culture (IMC) in cereal breeding programs. The present study was conducted in triticale and bread wheat IMC to increase the production of green plants and minimize albinism. NPB-99?+?10% Ficoll induction medium was supplemented with mitochondrial or plastid antioxidants, in a completely random design, to evaluate their contribution to successful microspore embryogenesis and green plant production. Each group of antioxidants was tested independently: first in triticale and then validated in various spring wheat genotypes. While the response differed by wheat genotype, induction medium supplemented with proline (10 mM) yielded a greater number of embryos/embryo-like structures and green plants in both triticale and wheat. No differences were found with respect to albinism in triticale or wheat except for the cv. Sadash. Among plastid antioxidants tested, glutathione (2 μM) proved to be the best antioxidant to increase embryo and green plant production. Salicylic acid also helped to reduce the number of albino plants in triticale and the wheat genotype SWS366. Overall, induction medium supplemented with proline or glutathione enhanced microspore embryogenesis in both triticale and wheat and increased the number of green plants in the recalcitrant genotypes.  相似文献   

3.
A simple anther culture protocol for Australian spring wheat cultivars was developed using ovary co-culture. The inclusion of ovaries in the induction medium significantly increased the production of embryo-like structures (ELS), green and albino plants in two spring wheat cultivars tested. When five ovaries were added to the induction medium, the mean number of ELS per spike increased from 7.6 to 50.1 and green plants per spike increased from 0.6 to 8.9. The addition of 10 ovaries, however, did not further increase the production of ELS or green plants. The growth regulator combination of 2,4-D and KIN was compared with IAA and BA. There were no significant differences in the numbers of ELS or green plants although significantly fewer albino plants were produced with IAA and BA. Eight additional cultivars were screened using the protocol with either 5 or 10 ovaries in the induction medium. Green plants were obtained from nine varieties at frequencies ranging from 0.3 to 33.0 green plants per spike. Regenerant plants at maturity exhibited chromosome fertility rates in different cultivars ranging from 15% to 100%.  相似文献   

4.

Key message

Cefotaxime (100 mg/l) mitigate occasional gram negative bacterial contamination in wheat and triticale microspore culture and most importantly it increases cell growth and green plant production.

Abstract

Isolated microspore culture is a promising option to rapidly fix the product of meiotic recombination of F1 hybrids, in the process of varietal development. Clean culture and high embryogenesis rate are essential to commercial triticale and wheat microspore cultures. So, this study investigated (1) contaminants from isolated microspores cultures, (2) two antibiotics to control bacterial growth, and (3) the contribution of antibiotics to increased microspore-derived embryo-like structures (ELS), green and albino plants. Five species of bacteria were identified in contaminated cultures (Erwinia aphidicola, Pantoea agglomerans, Pseudomonas sp., Staphylococcus epidermis and Staphylococcus warneri) using fatty acid analysis and 16S ribosomal RNA sequences analysis, and yeast. Antibacterial susceptibility test using Cefotaxime and Vancomycin resulted in strong inhibition of 24 bacterial isolates, using Cefotaxime at 100 mg/l, but not Pseudomonas sp. Other antibiotic treatments inhibited bacterial growth at least partially. Microspore induction medium supplemented with the same antibiotics treatments resulted in successful microspore embryogenesis and green plant production. Antibiotic treatments were first tested in triticale and then validated in wheat cultivars AC Carberry and AC Andrew. Induction medium supplemented with Cefotaxime at 50 and 100 mg/l substantially increased the formation of ELS and green plants in triticale and wheat, respectively. Incidentally, it also affected the occurrence of albinism in all genotypes. Our results demonstrated dual purpose of Cefotaxime for isolated microspore culture, most importantly it increases cell growth and success of microspore cultures in triticale and wheat genotypes, but would also prevent accidental loss of cultures with most common bacterial contaminants.  相似文献   

5.
Isolated microspore culture was conducted on nine Canadian triticale cultivars (X Triticosecale Wittmack) using two induction media developed for wheat, with or without 100 g l−1 Ficoll. Significant interactions were observed for the number of embryos and calluses induced, green and albino plantlets regenerated and fertility of green plants. Ficoll was beneficial in both media to increase numbers of embryos and green plants for all cultivars. Overall, medium NPB99 supplemented with ficoll provided the most suitable condition for most cultivars. AC Alta performed slightly better on CHB3 supplemented with Ficoll. Only cv. Wapiti was not amenable to androgenesis. The cultivars AC Certa, AC Copia, AC Alta, Sandro, Ultima, Frank, Pronghorn and Banjo produced respectively, 10, 9, 6, 5, 4, 3, 3 and 1 green plants per Petri dish (35,000 microspores), on their optimum treatment. Twenty-two percent of total lines produced were fertile, and considered doubled haploids. The application of isolated microspore culture to triticale, opens new possibilities in breeding triticale, for the utilization of in vitro selection and genetic engineering.  相似文献   

6.
The aim of this study was to determine the effect of genotype and induction medium in anther culture of wheat (Triticum aestivum L.). Ten F1 winter wheat genotypes were tested in anther culture (AC) to compare the two most frequently applied induction media (W14mf and P4mf). Androgenesis was induced during the treatment of each tested genotypes and green plants were produced from them using both media. Based on statistical analysis, the genotypes significantly influenced (at the 0.001 probability level) the efficiency of AC (embryo-like structures (ELS), albinos, green plantlets and transplanted plantlets) and the media also had a significant effect on the number of ELS and albino plantlets. Both media can be used for AC in wheat doubled haploid (DH) plant production. The production of ELS and green plantlets was higher in P4mf medium (48.84 ELS/100 anthers, 4.82 green plantlets/100 anthers) than in W14mf medium (28.14 ELS/100 anthers, 4.59 green plantlets/100 anthers). However, the green plant regeneration efficiency of the microspore-derived structures was 16.9% when using W14mf medium, while this value was 9.6% in the case of ELS induced with P4mf medium. The application of W14mf medium thus proved to be time- and labour-saving medium in the large-scale production of DH wheat plants. In our experiments, 267 DH plants were produced for our winter wheat breeding program. The spontaneous rediploidization rate was 32.72%.  相似文献   

7.
Unfertilized ovary culture constitutes an effective method for haploid breeding and can greatly shorten the breeding time. This method has been successfully used for breeding in many species, but reports of this method for breeding watermelon are scarce. Therefore, we performed an experiment to induce haploid plantlets. We evaluated the effects of several important factors on unfertilized ovary cultures of watermelon, including genotype, medium, the duration of induction and the development stage of the ovaries. The results revealed that the genotype of donor plants was a key factor for in vitro gynogenesis. The induction rate of eight watermelon cultivars varied from 0.00 to 15.14 ELSs per100 ovary slices. The most effective induction medium and maturation medium were MS medium supplemented with 3 mg L??1 2,4-D, 2 mg L??1 BAP, 0.5 mg L?1 NAA and MS supplemented with 0.8 mg L??1 BAP and 0.2 mg L??1 NAA, respectively. The duration of induction significantly influenced ELS formation. The optimum duration was 13 days, and unfertilized ovaries collected at anthesis had the higher induction rate. We obtained more than 100 plantlets and used chromosome counting and flow cytometry to determine the ploidy levels of 50 of them, among which 48 were haploid and 2 were diploid. Our results demonstrated that in vitro gynogenesis can be induced in watermelon by unfertilized ovaries culture.  相似文献   

8.
A suitable form of iron supplement in the induction medium was found to be important for further development of induced pollen embryos in barley and wheat cultivars (genotypes), especially those providing few green plants viain vitro androgenesis. Genotypes able to regenerate many green plants were less susceptible to the lack of iron in induction medium. Although Fe-EDTA was found to be a suitable form of iron in the induction medium, androgenesis was also induced on media containing non-chelated iron (Fe2+ and Fe3+ ions). EDTA alone without iron inhibited the androgenic response even in the wheat cv. Florida, a model cultivar for androgenesis in wheat. In all barley cultivars under study including cv. Igri, a model cultivar for androgenesis in barley, EDTA alone caused an almost total suppression of androgenesis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Double haploids (DH), obtained during androgenesis in vitro or by genome diploidisation in regenerated haploids, are one type of basic materials used in triticale breeding programmes. The aim of this study was to improve DH production by a combination of colchicine treatment methods on a sample of five winter and five spring triticale hybrids. Colchicine was applied in vitro either in the C17 medium to induce embryo-like structures (ELS) or in the 190-2 medium for green plant (GP) development. Regenerants which remained haploid were immersed in a colchicine solution either when placed on the medium prior to transferring to soil or when growing in pots, followed by the application or absence of cooling. Colchicine treatment during anther culture affected neither ELS nor GP development, but significantly increased the number of DH plants in comparison to spontaneous chromosome doubling. The highest efficiency was recorded when colchicine was applied in the induction medium (55%) versus the regeneration medium (44.5%) or no colchicine treatment (30%). The effectiveness of chromosome duplication in haploid plants ranged from 32 to 64.5% and it was the highest for the treatment on the medium followed by cooling. Individual hybrids differed regarding their capability of regeneration and chromosome doubling, which were consistent only to a low or moderate extent. However, taken together, winter and spring hybrids did not differ significantly. Combined colchicine application resulted in a high yield of DH production, 82.6% for all triticale hybrids, and can provide a considerable number of fertile DH lines for triticale breeding programmes.  相似文献   

10.
The androgenetic response of several selected male sterility-maintainer genotypes of triticale was investigated. Androgenesis induction was obtained in all cultivars, but a large genotypic variation in green plant regeneration was observed. The number of regenerated triticale plants varied from 0.1 to 4.7 green plants per spike, depending on genotype. Spontaneous doubling of chromosomes varied from 14 to 60% for particular genotypes and, on average, reached the value of 34% for all genotypes. Fertile DH lines obtained in this study will find practical application in the development of triticale male sterile lines that are desirable in hybrid breeding.  相似文献   

11.
Triticale is being considered as a bioindustrial crop in Canada using genetic modification. Because related spring wheat (Triticum aestivum) and durum wheat (T. durum) may exhibit synchronous flowering and grow in proximity, determination of interspecific gene flow when triticale is the pollen donor is necessary to evaluate potential risk. Pollen-mediated gene flow risk assessments generally rely on phenotypic markers to detect hybridization but DNA markers could be powerful and less ambiguous in quantifying rare interspecific gene flow. Six cultivars representing four species [spring wheat, durum wheat, triticale and rye (Secale cereale)] were screened with 235 spring wheat and 27 rye SSR markers to evaluate transferability and polymorphism. Fifty-five polymorphic markers were used in conjunction with morphological characterization to quantify interspecific gene flow from a blue aleurone (BA) triticale line to two spring wheat cultivars (AC Barrie and AC Crystal) and one durum wheat cultivar (AC Avonlea). Approximately 1.9 Million seeds from small plot experiments were visually screened in comparison with known hybrid seed. In total 2031 putative hybrids were identified and 448 germinated. Morphological analysis of putative hybrid plants identified five hybrids while molecular analysis identified 11 hybrids and two were common to both. Combined, 14 hybrids were confirmed: 10 spring wheat × triticale (0.0008 % of harvested seed): seven AC Barrie × BA triticale (0.001 %) and three AC Crystal × BA triticale (0.0005 %); and four durum wheat × triticale (0.0006 %). The occurrence of rare hybrids does not present a substantial risk to the development of GM triticale.  相似文献   

12.
The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C17 induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars ‘Ciccio’ and ‘Claudio’ an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F1 crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named ‘Lanuza’, has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.  相似文献   

13.
Rice double haploid (DH) plants are produced mainly through anther culture. In order to improve the anther culture protocol, microspores of two japonica rice genotypes (NRVC980385 and H28) were subjected to three growth regulator combinations and four colchicine treatments on induction medium. In addition, a post anther culture procedure using colchicine or oryzalin was tested to induce double haploid plantlets from haploid plantlets. A cold pre-treatment of microspores for 9 days at 10 °C increased callus induction 50-fold in the NRCV980385 genotype. For both genotypes, 2 mg L?1 2,4-D and 1 mg L?1 kinetin on colchicine-free induction medium gave the best culture responses. The culturability of both genotypes changed on colchicine-supplemented induction media. A high genotype dependency was recorded for callus induction, callus regenerating green plantlets and regeneration of green double haploid plantlets. Colchicine at 300 mg L?1 for 48 h enhanced callus induction 100-fold in H28. Colchicine-supplemented media clearly improved green double haploid plantlet regeneration. We showed that the post-anther culture treatment of haploid plantlets at 500 mg L?1 of colchicine permitted fertile double haploid plantlets to be generated. Finally, an enhanced medium-throughput flow cytometry protocol for rice was tested to analyse all the plantlets from anther and post anther culture.  相似文献   

14.
Anthers of three hexaploid wheat (Triticum aestivum L.) genotypes with high frequencies of albino regenerants in anther culture were compared to DH after inoculation on medium supplemented with ficoll, colchicine or maltose separately, pair-wise or combined, in an attempt to increase green plant regeneration. Maltose treatment produced more green regenerated plants than sucrose for all of the genotypes. The three chemicals combined in anther medium either reduced green plant regeneration or did not yield significantly different numbers of green regenerated plants compared to the maltose treatment. With DH fewer embryo-like structures (ELS) were obtained per 100 cultured anthers on all medium containing colchicine but greater frequencies of green plants per 100 ELS were obtained. It appeared that the increase in green regenerated plants per 100 ELS was due to a better quality of embryos that were capable of regenerating into green rather than albino plantlets. Smaller increases in green plants per 100 ELS were observed in ICR 4 and V-15 on colchicine containing medium compared to DH. Genotypic differences in anther culture response were observed for ELS per 100 cultured anthers (increased for V-37, decreased for DH and approx. the same for ICR 4 and V-15 in medium with all three chemicals compared to the sucrose control).  相似文献   

15.
A total of 200 doubled haploids (DHs) were generated from an elite rice hybrid, ‘BS6444G’ for which an androgenic method was developed by manipulating the physical and chemical factors. The spike pretreated at 10?°C for 7–8 days was effective for callusing and green plant regeneration. The maximum callus frequency was achieved when the anthers cultured in N6 medium supplemented with 2.0 mg L?1 2,4-diclorophenoxyacetic acid, 0.5 mg L?1 6-benzylaminopurine and 3% maltose. Calli induced in N6 media also showed significant green shoot regeneration in MS medium supplemented with 0.5 mg L?1 1-napthalene acetic acid, 0.5 mg L?1 kinetin, 1.5 mg L?1 benzylaminopurine and 3% sucrose producing 210 green plants. Assessment of the ploidy status showed 95.71% fertile diploids and 4.2% polyploids; no haploids were observed. A total of 38 sequence-tagged microsatellite (STMS) markers proved able to discriminate a heterozygote from all the 200 DHs. The DHs grown in the field showed significant variation for their agronomic traits. Comparison of traits with control indicates homogeneity within each DH line and significant variance of traits between DH lines. Nine DH lines produce higher grain yield than the hybrid parent which suggests the possibility of exploiting hybrid vigor in indica rice through the development of DH lines of high yielding hybrids.  相似文献   

16.
Wheat and triticale plants were transformed by bombardment of isolated scutella with a genetic construct consisting of the two anthocyanin biosynthesis regulatory genes, C1 and Bperu, each under the control of the Ltp1 embryo-specific promoter. Transgenic plants were obtained in the absence of selective pressure and selectable marker gene at a transformation frequency of 0.93% and 1.55% in triticale and wheat, respectively. Initial screening of T0 lines was performed by polymerase chain reaction (PCR), and further confirmation of PCR positives was done using real-time PCR and by phenotypic observation. In this study, quantitative real-time PCR (qRT-PCR) was developed to determine the transgene copy number in transgenic wheat and triticale. A conserved wheat housekeeping gene, puroindoline-b, was used as an internal control to calculate the transgene copy number in wheat and the SYBR green detection method with a standard curve, constructed on the basis of serially diluted plasmid, was used to calculate the transgene copy in triticale. Estimated transgene copies varied from 3 to 8 in wheat and 4 to 7 in triticale lines. The presence of anthocyanin regulatory genes, promoter, and termination sequences was detected in six wheat lines and four triticale lines. However, anthocyanin-pigmented embryos were only observed visually in mature T1 seeds of two transgenic wheat lines and a single triticale line. Multisite insertion and reorganization of transgenes was likely the explanation for the failure of expression for the anthocyanin genes in the remaining wheat and triticale transgenic lines.  相似文献   

17.
The recalcitrancy of durum wheat (Triticum turgidum var. durum) to anther culture, was attempted to be overcome by transferring the responsible genes form bread wheat B-genome to the respective on durum wheat, determining an appropriate induction medium and clarifying the necessity of cold pretreatment. For this, three durum wheat cultivars were crossed to two bread wheat (Triticum aestivum L. em Thell) cultivars. The resulting F1 plants and their original cultivars were grown in the field and anthers at the appropriate microspore stage were cultured on potato-2 and W14 media with and without low temperature pretreatment. No green plants were produced from the parental durum wheat cultivars. In contrast, green plants were produced from the F1 plants. The best results in three of the four F1 hybrids were recorded when potato-2 was used as induction medium. A more variable response of the examined genotypes was noticed with respect to temperature pretreatment. Regarding green plant production, a negative effect of cold pretreatment was observed in two of the F1 hybrids when they were cultured on potato-2. Chromosome counts on root tips from the resulting green plants revealed that they all carried D-genome chromosomes. The last observation could suggest that D-genome chromosomes are necessary for anther culture response in wheat. Yet, the production of one green plant with 15 chromosomes may indicate that the development of extracted durum genotypes from bread wheat genotypes with good response to in vitro anther culture might be possible. Further work however, is needed for this to be verified.  相似文献   

18.

Key message

An improved isolated microspore culture protocol alleviating the recalcitrance typically observed in six-row spring barley was developed by optimizing four key physical factors to increase embryogenesis and reduce albinism.

Abstract

Doubled haploid (DH) plants are completely homozygous individuals that can be generated in just a few months via androgenesis in vitro. DHs are useful tools in genetic research and in plant breeding. Isolated microspore culture (IMC) is the most efficient way to produce DHs, but a strong genotype dependency imposes limitations to its wide application. Six-row, spring barley genotypes are considered as particularly recalcitrant due to a low frequency of embryogenesis and a high rate of albinism. Seeking to develop an efficient IMC protocol for this type of barley, we explored four important factors: (1) the harvest stage of immature spikes, (2) the type of pretreatment applied, (3) the osmotic potential in the induction medium, and (4) the plating density of microspores. This work was first performed using four barley genotypes: two typical six-row spring cultivars (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) cultivar. First, by optimizing the harvest stage for each genotype we obtained a twofold to fourfold increase in the yield of embryogenic microspores. Second, two pretreatments (0.3 M mannitol for 2 days, or a combination of cold and heat over 15 days) both performed significantly better than the commonly used cold pretreatment (28 days at 4 °C). Third, an induction medium-containing mannitol (32 g/l) doubled green plant regeneration. Fourth, a plating density of 106 microspores/ml yielded the highest number of green regenerated plants. Our most important findings were then confirmed using sets of F1s from a six-row, spring-type breeding program.  相似文献   

19.
In order to investigate the function of the peptidyl plant growth factor, phytosulfokine-α (PSK-α), in plants, we examined the effect of PSK-α on the growth and chlorophyll content of Arabidopsis seedlings under high night-time temperature conditions. Although exposure to high night-time temperatures markedly reduced the fresh weight and chlorophyll content of the seedlings, these parameters in the plants supplied with PSK-α remained at the same levels as those of non-treated controls. These effects were not apparent when [2-5]PSK, Tyr-SO3H and kinetin were similarly supplied. The results suggest that PSK-α not only promotes cell proliferation, but may aid plants in their tolerance of heat stress.  相似文献   

20.

Key message

Two alternative cytokinins, thidiazuron and meta-topoline, were tested in isolated microspore culture on recalcitrant barley genotypes (six-row, spring), and green plant regeneration was improved substantially.

Abstract

Doubled-haploid (DH) plants are coveted in plant breeding and in genetic studies, since they are rapidly obtained and perfectly homozygous. In barley, DHs are produced mainly via androgenesis, and isolated microspore culture (IMC) constitutes the method offering the greatest potential efficiency. However, IMC can often be challenging in some genotypes because of low yield of microspores, low regeneration and high incidence of albinism. Six-row spring-type barleys, the predominant type grown in Eastern Canada, are considered recalcitrant in this regard. Our general objective was to optimize an IMC protocol for DH production in six-row spring barley. In particular, we explored the use of alternative hormones in the induction medium (thidiazuron and dicamba), and in the regeneration medium (meta-topoline). This optimization was performed on two typical six-row spring (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) barley cultivar. When 6-benzyl-aminopurine (BAP) was replaced by a combination of thidiazuron and dicamba in the induction medium, a 5.1-fold increase (P < 0.01) in the production of green plants resulted. This increase was mainly achieved by a reduction of albinism. Moreover, a 2.9-fold increase (P < 0.01) in embryo differentiation into green plants was obtained using meta-topoline instead of BAP in the regeneration medium. Together, these innovations allowed us to achieve a substantial improvement in the efficiency of IMC in this recalcitrant type of barley. These results were later successfully validated using sets of F1s from a six-row spring barley breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号