首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 3 毫秒
1.
SYNOPSIS. Euglena gracilis strain Z has a motor response which results in orientation with respect to the polarization of a light stimulus. Cells swim preferentially in a direction perpendicular to the plane of polarization of the stimulus. If 2 polarized stimuli are given from opposite directions, the preferred direction is, under certain circumstances, at right angles to the directions of both stimuli. Euglena also preferentially assumes an orientation that is at right angles to the force of gravity. The relationships between these responses and phototactic movements oriented with respect to the direction of the stimulus are discussed.  相似文献   

2.
SYNOPSIS. Isozymes of malic enzyme in Euglena gracilis strain Z were analyzed by starch-gel electrophoresis. Wild-type and heat-bleached strains were cultured in the light and the dark in the presence of various carbon sources. An isozyme detectable in heterotrophic cultures was repressed by photosynthesis. A model is proposed to explain photorepression of this isozyme.  相似文献   

3.
SYNOPSIS. In low viscosity media, Euglena gracilis strain Z responds to a sudden change in light intensity by a cessation of forward movement, followed by a reorientation of the locomotor flagellum which results in turning of the cell around the lateral axis (photophobic response). At a viscosity interface between low [~ 1 cP (centipoise)] and high (4000 cP) media, the cells exhibit avoidance responses or become immobilized in the higher viscosity medium. Upon changing the light intensity, free swimming cells have photophobic responses, while immobilized ones undergo body contractions. For cells immersed in media of varying viscosity, the delay between light stimulation and body contraction (transduction time) is shortest at high viscosities. From 500 to 2000 cP, where the cells are capable of both movement and light-induced body contractions, there is a logarithmic dependence of the transduction time on the viscosity. The transduction time does not vary appreciably with the intensity of the primary light stimulus within a range of 0.14-1.13 kW/m2.  相似文献   

4.
SYNOPSIS. The effects of phosphate starvation on the synthetic and division rates of Euglena gracilis strain Z are described. Phosphate starvation inhibits rates of the following processes, in the order: RNA synthesis > DNA synthesis > cell division > chlorophyll synthesis and plastid replication. As a consequence of the differential effect of phosphate starvation on the synthetic and division rates the average gross chemical composition of the cells is subject to continuous change.  相似文献   

5.
SYNOPSIS The pattern of chloroplast development was followed in Euglena gracilis strain Z greening in media with a variety of fixed carbon and nitrogen sources. The greening pattern of cells grown in inorganic medium with added ethanol or glucose involves an inhibition of chloroplast development when compared to that of cells grown in inorganic medium alone. Several nitrogen sources were tested to ascertain their effectiveness in relieving the inhibition of chloroplast development by glucose. Of those, only 0.05% (w/v) (NH4)2 SO4 accelerated the recovery from the inhibition after most of the glucose had been removed from the medium by the cells. The other nitrogen sources tested were not effective. An inhibition of chloroplast development, similar to that observed in cells greening in the presence of glucose, was seen in cells greening in an ethanol-containing medium. These cells, however, had a different response upon the addition of 0.05% (NH4)2 SO4. They appeared to recover from the inhibition of chloroplast development, even before the ethanol was removed from the medium by the cells. A slight enhancement of chloroplast development was noted in cells greening in an inorganic medium with glycine or serine. Other amino acids tested had little or no effect.  相似文献   

6.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

7.
SYNOPSIS. Optimal assay conditions are described for 8 hydrolases of Euglena gracilis var. bacillaris, SM-L1 (streptomycinbleached) strain, 7 of which have an acid pH-optimum. Acid phosphatase, β-galactosidase, β-glucosidase, β-fucosidase, cathepsin D, RNase, DNase, and an esterase are active in cell homogenates. Amylase has very low activity, and β-glucuronidase, arylsulfatase, β, N-acetyl-glucosaminidase, α-fucosidase, and α- and β-mannosidase are inactive. Hydrolase activity increases as a culture proceeds from the midexponential to the late stationary-phase of growth, being most pronounced in the case of β-glucosidase. In cultures deprived of a utilizable carbon source, the specific activities of the hydrolases (per mg total protein or dry weight) increase. When expressed on a per cell basis, however, the activities of DNase decrease while those of β-galactosidase, cathepsin D, and RNase increase. The hydrolases appear to be involved in the adaptation of Euglena to the metabolic demands imposed by different conditions of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号