首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
ADAM-TS/metallospondin genes encode a new family of proteins with structural homology to the ADAM metalloprotease-disintegrin family. However, unlike other ADAMs, these proteins contain thrombospondin type 1 (TSP1) repeats at the carboxy-terminal end and are secreted proteins instead of being membrane bound. Members of the ADAM-TS family have been implicated in the cleavage of proteoglycans, the control of organ shape during development, and the inhibition of angiogenesis. We have cloned a new member of the ADAM-TS/metallospondin family designated here as ADAMTS9. This protein has a metalloprotease domain, a disintegrin-like domain, one internal TSP1 motif, and three carboxy-terminal TSP1-like submotifs. In contrast to other ADAM-TS family members, ADAMTS9 is expressed in all fetal tissues examined as well as some adult tissues. Using FISH and radiation hybrid analysis, we have localized ADAMTS9 to chromosome 3p14.2-p14.3, an area known to be lost in hereditary renal tumors.  相似文献   

3.
We report the primary structure of three novel, putative zinc metalloproteases designated ADAM-TS5, ADAM-TS6, and ADAM-TS7. All have a similar domain organization, comprising a preproregion, a reprolysin-type catalytic domain, a disintegrin-like domain, a thrombospondin type-1 (TS) module, a cysteine-rich domain, a spacer domain without cysteine residues, and a COOH-terminal TS module. These genes are differentially regulated during mouse embryogenesis and in adult tissues, with Adamts5 highly expressed in the peri-implantation period in embryo and trophoblast. These proteins are similar to four other cognate gene products, defining a distinct family of human reprolysin-like metalloproteases, the ADAM-TS family. The other members of the family are ADAM-TS1, an inflammation-induced gene, the procollagen I/II amino-propeptide processing enzyme (PCINP, ADAM-TS2), and proteins predicted by the KIAA0366 and KIAA0688 genes (ADAM-TS3 and ADAM-TS4). Individual ADAM-TS members differ in the number of COOH-terminal TS modules, and some have unique COOH-terminal domains. The ADAM-TS genes are dispersed in human and mouse genomes.  相似文献   

4.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   

5.
A disintegrin-like and metalloprotease domain with thrombospondin type I modules (ADAM-TS) describes a novel family of zinc metalloendopeptidases. Its members have a common domain organization, which includes, typically, a pre-pro-metalloprotease domain, a disintegrin-like domain, and one or more thrombospondin-like (TS) modules. We describe here the complete primary structure of mouse ADAM-TS8, through cloning of Adamts8 cDNA. This novel member of the family contains two TS modules and is highly similar in sequence and domain organization to three other recently described gene products, ADAM-TS5, ADAM-TS6, and ADAM-TS7. Adamts8 is expressed at low levels throughout development and in adult mouse lung and heart. Through analysis of an interspecific backcross panel, we place the Adamts8 locus on mouse chromosome 9 at a consensus position of 11 cM and its human ortholog, recently reported as the METH2 gene, on human chromosome 11q25.  相似文献   

6.
7.
The ADAMs (a disintegrin and metalloprotease) comprise a family of multidomain proteins with metalloprotease, cell adhesion, and signaling activities. Human ADAM12, which is implicated in diseases such as cancer, is expressed in two splice forms, the transmembrane ADAM12-L and the shorter and soluble ADAM12-S. ADAM12 is synthesized as a zymogen with the prodomain keeping the metalloprotease inactive through a cysteine-switch mechanism. Maturation and activation of the protease involves the cleavage of the prodomain in the trans-Golgi or possibly at the cell surface by a furin-peptidase. The aim of the present study was to determine the fate of the prodomain following furin cleavage. Here we demonstrate that, following cleavage of the human ADAM12-S prodomain in the trans-Golgi by a furin-peptidase, the prodomain remains non-covalently associated with the mature molecule. Accordingly, both the 68-kDa mature form of ADAM12-S and the 25-kDa prodomain could be detected using domain-specific antisera in immunoprecipitation and Western blot analyses of human serum ADAM12 and purified recombinant human ADAM12. Using electron microscopy after negative staining we have furthermore obtained the first visualization of a full-length ADAM molecule, human ADAM12-S, and report that it appears to be a compact clover composed of four globular domains, one of which is the prodomain. Finally, our data demonstrate that the presence of the metalloprotease domain appears to be sufficient for the prodomain to remain associated with the mature ADAM12-S. Thus, we conclude that the prodomain of human ADAM12-S is an integral domain of the mature molecule and as such might have specific biological functions in the extracellular space.  相似文献   

8.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

9.
Jararhagin, a hemorrhagin from Bothrops jararaca venom, is a soluble snake venom component comprising metalloproteinase and disintegrin cysteine-rich domains and, therefore, is structurally closely related to the membrane-bound A Disintegrin And Metalloproteinase (ADAMs) protein family. Its hemorrhagic activity is associated with the effects of both metalloproteinase and disintegrin domains; the metalloproteinase enzymatically damages the endothelium and the disintegrin domain inhibits platelet-collagen interactions. The expression of whole jararhagin or its disintegrin domain has never been attempted before. The aim of this study was to investigate whether we could express the disintegrin domain of jararhagin and to verify whether this domain displays an inhibitory effect on the platelet-collagen interaction. Therefore, the cDNA fragment coding for the disintegrin plus cysteine-rich domains of jararhagin was cloned into the pET32a vector, used to transform the Escherichia coli AD494(DE3)pLysS strain. The thioredoxin-disintegrin fusion protein was recovered from the soluble extract of the cells, yielding up to 50 mg/liter culture. The fusion protein was isolated using polyhistidine binding resin which resulted in a main band of 45 kDa recognized by anti-native jararhagin antibodies. Antibodies raised in rabbits against the fusion protein had high enzyme-linked immunosorbent assay titers against native jararhagin and detected a band of 52 kDa on Western blots of whole B. jararaca venom demonstrating that these antibodies recognize the parent jararhagin molecule. Treatment of the fusion protein with enterokinase, followed by further capture of the enzyme, resulted in a band of 30 kDa, the expected size for jararhagin-C. Further purification of the cleaved disintegrin using FPLC Mono-Q columns resulted in one fraction capable of efficiently inhibiting collagen-induced platelet aggregation in a dose-dependent manner (IC(50) of 8.5 microg/ml).  相似文献   

10.
11.
12.
The extracellular domain of the mature form of ADAM12 consists of the metalloprotease, disintegrin, cysteine-rich, and epidermal growth factor (EGF)-like domains. The disintegrin, cysteine-rich, and EGF-like fragments have been shown previously to support cell adhesion via activated integrins or proteoglycans. In this study, we report that the entire extracellular domain of mouse ADAM12 produced in Drosophila S2 cells supported efficient adhesion and spreading of C2C12 myoblasts even in the absence of exogenous integrin activators. This adhesion was not mediated by beta1 integrins or proteoglycans, was myoblast-specific, and required the presence of both the metalloprotease and disintegrin/cysteine-rich domains of ADAM12. Analysis of the recombinant proteins by far-UV circular dichroism suggested that the secondary structures of the autonomously expressed metalloprotease domain and the disintegrin/cysteine-rich/EGF-like domains differ from the structures present in the intact extracellular domain. Furthermore, the intact extracellular domain (but not the metalloprotease domain or the disintegrin/cysteine-rich/EGF-like fragment alone) decreased the expression of the cell cycle inhibitor p21 and myogenin, two markers of differentiation, and inhibited C2C12 myoblast fusion. Thus, the novel protein-protein interaction reported here involving the extracellular domain of ADAM12 may have important biological consequences during myoblast differentiation.  相似文献   

13.
14.
Cleavage of the 45-kDa gelatin-binding fragment of human plasma fibronectin with fibronectinase resulted in the activation of two forms of metalloproteinase with different substrate specificities. The 40-kDa FN-type-IV collagenase A degrades heat-denatured type-I collagen, laminin and also native collagen type IV. The 27-kDa FN-type-IV collagenase B degrades native collagen type IV, but it does not cleave laminin and only poorly degrades gelatin. Both enzymes begin with the same N-terminal sequence VYQPQPH- (residues 262-268 of fibronectin) but, contrary to the FN-type-IV collagenase A, the FN-type-IV collagenase B has lost the C-terminal region of type I repeats, where the major gelatin-binding determinants of fibronectin are located. The FN-type-IV collagenases A and B are sequentially similar to the middle domain (domain II) of collagenase type IV, secreted by H-ras-transformed human bronchial epithelial cells. Substrate and inhibition specificity of FN-type-IV collagenase A and B are different from those of FN-gelatinase and FN-laminase, isolated previously from the central and C-terminal fibronectin domains, respectively. The substrate specificity of both enzymes, characterized in this study, is also different from that of already known matrix-degrading metalloproteinases.  相似文献   

15.
AaHIV, a P-III-type snake venom metalloproteinase (SVMP), consists of metalloproteinase/disintegrin/cysteine-rich (MDC) domains and is homologous to a disintegrin and metalloproteinase (ADAM) family proteins. Similar to brevilysin H6 and jararhagin, AaHIV can easily autolyse to release a stable protein named acucetin, which contains disintegrin-like and cysteine-rich domains. In this study, we determined the crystal structure of AaHIV and investigated the autolysis mechanism. Based on the structure of AaHIV and the results from docking experiments, we present a new model for target recognition in which two protein molecules form a functional unit, and the DC domain of one molecule is used for target recognition while the M-domain of the other is used for target proteolysis. Our results shed new light on the mechanism of target recognition and processing in ADAM/reprolysin family proteins.  相似文献   

16.
17.
Nectin is a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule implicated in the organization of the junctional complex comprised of E-cadherin-based adherens junctions and claudin-based tight junctions in epithelial cells. Scatter factor (SF)/hepatocyte growth factor (HGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting phorbol ester, induce cell spreading, followed by cell-cell dissociation and cell scattering, in Madin-Darby canine kidney (MDCK) cells. We found here that SF/HGF and TPA induced proteolytic cleavage of nectin-1alpha in the ectodomain, resulting in generation of the 80-kDa extracellular fragment and the 33-kDa fragment composed of the transmembrane and cytoplasmic domains, in MDCK cells. This shedding of nectin-1alpha was inhibited by metalloprotease inhibitors. These results indicate that SF/HGF and TPA induce the ectodomain shedding of nectin-1alpha presumably by a metalloprotease, and have raised the possibility that this shedding is involved in the SF/HGF- and TPA-induced cell-cell dissociation.  相似文献   

18.
Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth   总被引:63,自引:0,他引:63  
We isolated and identified an endogenous 24-kDa human basement membrane-derived inhibitor of angiogenesis and tumor growth, termed canstatin. Canstatin, a fragment of the alpha2 chain of type IV collagen, was produced as a recombinant molecule in Escherichia coli and 293 embryonic kidneys cells. Canstatin significantly inhibited human endothelial cell migration and murine endothelial cell tube formation. Additionally, canstatin potently inhibited 10% fetal bovine serum-stimulated endothelial cell proliferation and induced apoptosis, with no inhibition of proliferation or apoptosis observed on non-endothelial cells. Inhibition of endothelial proliferation was not concomitant with a change in extracellular signal-regulated kinase activation. We demonstrate that apoptosis induced by canstatin was associated with a down-regulation of the anti-apoptotic protein, FLIP. Canstatin also suppressed in vivo growth of large and small size tumors in two human xenograft mouse models with histology revealing decreased CD31-positive vasculature. Collectively, these results suggest that canstatin is a powerful therapeutic molecule for suppressing angiogenesis.  相似文献   

19.
L M Coluccio  A Bretscher 《Biochemistry》1990,29(50):11089-11094
In intestinal microvilli, the 110K-calmodulin complex is the major component of the cross-bridges which connect the core bundle of actin filaments to the membrane. Our previous work showed that the 110-kDa polypeptide can be divided into three functional domains: a 78-kDa fragment that contains the ATPase activity and the ATP-reversible F-actin-binding site, a 12-kDa fragment required for binding calmodulin molecules, and a terminal 20-kDa domain of unknown function [Coluccio, L. M., & Bretscher, A. (1988) J. Cell Biol. 106, 367-374]. By analysis of limited alpha-chymotryptic cleavage products, we now show that the molecular organization is very similar to that described for the S1 fragment of myosin. The catalytic site was identified by photoaffinity labeling with [5,6-3H]UTP, and fragments binding F-actin were identified by cosedimentation assays. Cleavage of the 78-kDa fragment yielded major fragments of 32 and 45 kDa, followed by cleavage of the 45-kDa fragment to a 40-kDa fragment. Of these, only the 32-kDa fragment was labeled by [5,6-3H]UTP. Physical characterization revealed that the 45- and 32-kDa fragments exist as a complex that can bind F-actin, whereas the 40-kDa/32-kDa complex cannot bind actin. We conclude that the catalytic site is located in the 32-kDa fragment and the F-actin-binding site is present in the 45-kDa fragment; the ability to bind actin is lost upon further cleavage of the 45-kDa fragment to 40 kDa. Peptide sequence analysis revealed that the 45-kDa fragment lies within the molecule and suggests that the 32-kDa fragment is the amino terminus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号