首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Varicella-zoster virus (VZV) glycoprotein I (gI) is dispensable in cell culture; the SCIDhu model of VZV pathogenesis was used to determine whether gI is necessary in vivo. The parental and repaired viruses grew in human skin and thymus/liver implants, but the gI deletion mutant was not infectious. Thus, gI is essential for VZV infectivity in skin and T cells.  相似文献   

2.
The gene cluster composed of varicella-zoster virus (VZV) open reading frame 9 (ORF9) to ORF12 encodes four putative tegument proteins and is highly conserved in most alphaherpesviruses. In these experiments, the genes within this cluster were deleted from the VZV parent Oka (POKA) individually or in combination, and the consequences for VZV replication were evaluated with cultured cells in vitro and with human skin xenografts in SCID mice in vivo. As has been reported for ORF10, ORF11 and ORF12 were dispensable for VZV replication in melanoma and human embryonic fibroblast cells. In contrast, deletion of ORF9 was incompatible with the recovery of infectious virus. ORF9 localized to the virion tegument and formed complexes with glycoprotein E, which is an essential protein, in VZV-infected cells. Recombinants lacking ORF10 and ORF11 (POKADelta10/11), ORF11 and ORF12 (POKADelta11/12), or ORF10, ORF11 and ORF12 (POKADelta10/11/12) were viable in cultured cells. Their growth kinetics did not differ from those of POKA, and nucleocapsid formation and virion assembly were not disrupted. In addition, these deletion mutants showed no differences compared to POKA in infectivity levels for primary human tonsil T cells. Deletion of ORF12 had no effect on skin infection, whereas replication of POKADelta11, POKADelta10/11, and POKADelta11/12 was severely reduced, and no virus was recovered from skin xenografts inoculated with POKADelta10/11/12. These results indicate that with the exception of ORF9, the individual genes within the ORF9-to-ORF12 gene cluster are dispensable and can be deleted simultaneously without any apparent effect on VZV replication in vitro but that the ORF10-to-ORF12 cluster is essential for VZV virulence in skin in vivo.  相似文献   

3.
4.
The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-gamma. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.  相似文献   

5.
Varicella-zoster virus (VZV) glycoprotein E (gE) is a multifunctional protein important for cell-cell spread, envelopment, and possibly entry. In contrast to other alphaherpesviruses, gE is essential for VZV replication. Interestingly, the N-terminal region of gE, comprised of amino acids 1 to 188, was shown not to be conserved in the other alphaherpesviruses by bioinformatics analysis. Mutational analysis was performed to investigate the functions associated with this unique gE N-terminal region. Linker insertions, serine-to-alanine mutations, and deletions were introduced in the gE N-terminal region in the VZV genome, and the effects of these mutations on virus replication and cell-cell spread, gE trafficking and localization, virion formation, and replication in vivo in the skin were analyzed. In summary, mutagenesis of the gE N-terminal region identified a new functional region in the VZV gE ectodomain essential for cell-cell spread and the pathogenesis of VZV skin tropism and demonstrated that different subdomains of the unique N-terminal region had specific roles in viral replication, cell-cell spread, and secondary envelopment.  相似文献   

6.
We provide the initial characterization of the product of the vaccinia virus A21L (VACWR140) gene and demonstrate that it is required for cell entry and low pH-triggered membrane fusion. The A21L open reading frame, which is conserved in all sequenced members of the poxvirus family, encodes a protein of 117 amino acids with an N-terminal hydrophobic domain and four invariant cysteines. Expression of the A21 protein occurred at late times of infection and was dependent on viral DNA replication. The A21 protein contained two intramolecular disulfide bonds, the formation of which required the vaccinia virus-encoded cytoplasmic redox pathway, and was localized on the surface of the lipoprotein membrane of intracellular mature virions. A conditional lethal mutant, in which A21L gene expression was regulated by isopropyl-beta-d-thiogalactopyranoside, was constructed. In the absence of inducer, cell-to-cell spread of virus did not occur, despite the formation of morphologically normal intracellular virions and extracellular virions with actin tails. Purified virions lacking A21 were able to bind to cells, but cores did not penetrate into the cytoplasm and synthesize viral RNA. In addition, virions lacking A21 were unable to mediate low pH-triggered cell-cell fusion. The A21 protein, like the A28 and H2 proteins, is an essential component of the poxvirus entry/fusion apparatus for both intracellular and extracellular virus particles.  相似文献   

7.
The adaptor molecule SAP (signaling lymphocytic activation molecule-associated protein) plays a critical role during NK T (NKT) cell development in humans and mice. In CD4(+) T cells, SAP interacts with the tyrosine kinase Fyn to deliver signals required for TCR-induced Th2-type cytokine production. To determine whether the SAP-dependent signals controlling NKT cell ontogeny rely on its binding to Fyn, we used the OP9-DL1 system to initiate structure function studies of SAP in murine NKT cell development. In cultures containing wild-type (WT) hematopoietic progenitors, we noted the transient emergence of cells that reacted with the NKT cell-specific agonist alpha-galactosyl ceramide and its analog PBS57. Sap(-/-) cells failed to give rise to NKT cells in vitro; however, their development could be rescued by re-expression of WT SAP. Emergence of NKT cells was also restored by a mutant version of SAP (SAP R78A) that cannot bind to Fyn, but with less efficiency than WT SAP. This finding was accentuated in vivo in Sap(R78A) knock-in mice as well as Sap(R78A) competitive bone marrow chimeras, which retained NKT cells but at significantly reduced numbers compared with controls. Unlike Sap(R78A) CD4(+) T cells, which produce reduced levels of IL-4 following TCR ligation, alpha-galactosyl ceramide-stimulated NKT cells from the livers and spleens of Sap(R78A) mice produced Th2 cytokines and activated NK cells in a manner mimicking WT cells. Thus, SAP appears to use differential signaling mechanisms in NKT cells, with optimal ontogeny requiring Fyn binding, while functional responses occur independently of this interaction.  相似文献   

8.
F Jones  C Grose 《Journal of virology》1988,62(8):2701-2711
Varicella-zoster virus (VZV) encodes several glycoproteins which are present on both mature viral envelopes and the surfaces of infected cell membranes. Mechanisms of VZV glycoprotein transport and virion envelopment were investigated by both continuous radiolabeling and pulse-chase analyses with tritiated fucose in VZV-infected cells. We studied in detail the large cytoplasmic vacuoles which were present in infected cells but absent from uninfected cells. The specific activity in each subcellular compartment was defined by quantitative electron microscope autoradiography, using a cross-fire probability matrix analysis to more accurately assess the individual compartment demarcated by the silver grains. By these techniques, we documented a progression of activity originating in the Golgi apparatus and traveling through the post-Golgi region into virus-induced cytoplasmic vacuoles and finally to areas of the cellular membrane associated with the egress of viral particles. Significant amounts of radiolabel were not observed in the nucleus, and only low levels of radiolabel were associated with the cellular membrane not involved with the egress of viral particles. In addition, immunolabeling of Lowicryl-embedded VZV-infected cells demonstrated the presence of VZV glycoproteins within cytoplasmic vacuole membranes as well as on virion envelopes. These observations suggested that cytoplasmic vacuoles harbored VZV-specified glycoproteins and were also the predominant site of VZV virion envelopment within the infected cell. Neither enveloped nor unenveloped viral particles were observed within the Golgi apparatus itself.  相似文献   

9.
We generated an ORF65 deletion mutant by using a cosmid system constructed from the genome of a low-passage clinical isolate (P-Oka). Using the SCID-hu mouse model, we demonstrated that the ORF65 protein is dispensable for viral replication in skin and T cells, which are critical host cell targets during primary varicella-zoster virus infection.  相似文献   

10.
Open reading frame 4 (ORF4) of varicella-zoster virus (VZV) encodes an immediate-early protein that is believed to be important for viral infectivity and establishing latency. Evidence suggests that VZV-specific T cells are crucial in the control of viral replication, but there are no data addressing the existence of potential ORF4 protein-specific CD4+ T cells. We tested the hypothesis that VZV ORF4 protein-specific CD4+ T cells could be identified and characterized within the peripheral blood of healthy immune donors following primary infection. Gamma interferon (IFN-gamma) immunosorbent assays were used to screen peripheral blood mononuclear cells obtained from healthy seropositive donors for responses to overlapping ORF4 peptides, viral lysate, and live vaccine. High frequencies of ORF4 protein-specific T cells were detected ex vivo in individuals up to 52 years after primary infection. Several immunogenic regions of the ORF4 protein were identified, including a commonly recognized epitope which was restricted through HLA-DRB1*07. Total ORF4 protein-specific responses comprised 19.7% and 20.7% of the total lysate and vaccine responses, respectively, and were dominated by CD4+ T cells. Indeed, CD4+ T cells were found to dominate the overall virus-specific IFN-gamma cellular immune response both ex vivo and after expansion in vitro. In summary, we have identified an ORF4 protein as a novel target antigen for persistent VZV-specific CD4+ T cells, with implications for disease pathogenesis and future vaccine development.  相似文献   

11.
Promyelocytic leukemia protein (PML) has antiviral functions and many viruses encode gene products that disrupt PML nuclear bodies (PML NBs). However, evidence of the relevance of PML NB modification for viral pathogenesis is limited and little is known about viral gene functions required for PML NB disruption in infected cells in vivo. Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes cutaneous lesions during primary and recurrent infection. Here we show that VZV disrupts PML NBs in infected cells in human skin xenografts in SCID mice and that the disruption is achieved by open reading frame 61 (ORF61) protein via its SUMO-interacting motifs (SIMs). Three conserved SIMs mediated ORF61 binding to SUMO1 and were required for ORF61 association with and disruption of PML NBs. Mutation of the ORF61 SIMs in the VZV genome showed that these motifs were necessary for PML NB dispersal in VZV-infected cells in vitro. In vivo, PML NBs were highly abundant, especially in basal layer cells of uninfected skin, whereas their frequency was significantly decreased in VZV-infected cells. In contrast, mutation of the ORF61 SIMs reduced ORF61 association with PML NBs, most PML NBs remained intact and importantly, viral replication in skin was severely impaired. The ORF61 SIM mutant virus failed to cause the typical VZV lesions that penetrate across the basement membrane into the dermis and viral spread in the epidermis was limited. These experiments indicate that VZV pathogenesis in skin depends upon the ORF61-mediated disruption of PML NBs and that the ORF61 SUMO-binding function is necessary for this effect. More broadly, our study elucidates the importance of PML NBs for the innate control of a viral pathogen during infection of differentiated cells within their tissue microenvironment in vivo and the requirement for a viral protein with SUMO-binding capacity to counteract this intrinsic barrier.  相似文献   

12.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

13.
14.
Varicella-zoster virus (VZV) is a highly species-specific member of the Herpesviridae family. The virus exhibits multiple cell tropisms, infecting peripheral blood mononuclear cells and skin cells before establishing latency in sensory neurons. Such tropisms are essential both for primary infection, which manifests itself as chickenpox (varicella), and subsequent reactivation to cause herpes zoster (shingles). The highly cell-associated nature of the virus, coupled with its narrow host range, has resulted in the lack of an animal model that mimics its diseases in humans, thereby greatly hindering the study of events in VZV pathogenesis. Despite this, extensive studies both in vitro and in vivo in small-animal models have provided a fascinating insight into molecular events that govern VZV diseases. In addition, VZV has become the first human herpes virus for which a live attenuated vaccine has been developed.  相似文献   

15.
Taylor SL  Moffat JF 《Journal of virology》2005,79(17):11501-11506
Varicella-zoster virus (VZV) infection is restricted to humans, which hinders studies of its pathogenesis in rodent models of disease. To facilitate the study of VZV skin tropism, we developed an ex vivo system using human fetal skin organ culture (SOC). VZV replication was analyzed by plaque assay, transmission electron microscopy, and histology. The yield of infectious VZV from SOC increased approximately 100-fold over 6 days, virions were abundant, and lesions developed that contained VZV antigens and resembled varicella and zoster lesions. The SOC system for VZV replication has applications for testing virus mutants and antiviral drugs.  相似文献   

16.
There are several mechanisms by which human immunodeficiency virus (HIV) can mediate immune dysfunction and exhaustion during the course of infection. Chronic immune activation, after HIV infection, seems to be a key driving force of such unwanted consequences, which in turn worsens the pathological status. In such cases, the immune system is programmed to initiate responses that counteract unwanted immune activation, for example through the expansion of myeloid-derived suppressor cells (MDSCs). Although the expansion of immune suppressor cells in the setting of systemic chronic immune activation, in theory, is expected to contain immune activation, HIV infection is still associated with a remarkably high level of biomarkers of immune activation. Paradoxically, the expansion of immune suppressor cells during HIV infection can suppress potent anti-viral immune responses, which in turn contribute to viral persistence and disease progression. This indicates that HIV hijacks not only immune activation but also the immune regulatory responses to its advantage. In this work, we aim to pave the way to comprehend how such unwanted expansion of MDSCs could participate in the pathology of acute/primary and chronic HIV infection in humans, as well as simian immunodeficiency virus infection in rhesus macaques, according to the available literature.  相似文献   

17.
Natural killer T (NKT) cells represent an important regulatory T cell subset that develops in the thymus and contains immature (NK1.1(lo)) and mature (NK1.1(hi)) cell subsets. Here we show in mice that an inherited mutation in heterogeneous ribonucleoprotein L-like protein (hnRNPLL(thunder)), that shortens the survival of conventional T cells, has no discernible effect on NKT cell development, homeostasis or effector function. Thus, Hnrpll deficiency effectively increases the NKT∶T cell ratio in the periphery. However, Hnrpll mutation disrupts CD45RA, RB and RC exon silencing of the Ptprc mRNA in both NKT and conventional T cells, and leads to a comparably dramatic shift to high molecular weight CD45 isoforms. In addition, Hnrpll mutation has a cell intrinsic effect on the expression of the developmentally regulated cell surface marker NK1.1 on NKT cells in the thymus and periphery but does not affect cell numbers. Therefore our results highlight both overlapping and divergent roles for hnRNPLL between conventional T cells and NKT cells. In both cell subsets it is required as a trans-acting factor to regulate alternative splicing of the Ptprc mRNA, but it is only required for survival of conventional T cells.  相似文献   

18.
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.  相似文献   

19.
Productive infection of varicella-zoster virus (VZV) in vitro is restricted almost exclusively to cells derived from humans and other primates. We demonstrate that the restriction of productive VZV infection in CHO-K1 cells occurs downstream of virus entry. Entry of VZV into CHO-K1 cells was characterized by utilizing an ICP4/beta-galactosidase reporter gene that has been used previously to study herpes simplex virus type 1 entry. Entry of VZV into CHO-K1 cells involved cell surface interactions with heparan sulfate glycosaminoglycans and a cation-independent mannose-6-phosphate receptor. Lysosomotropic agents inhibited the entry of VZV into CHO-K1 cells, consistent with a low-pH-dependent endocytic mechanism of entry. Infection of CHO-K1 cells by VZV resulted in the production of both immediate early and late gene products, indicating that a block to progeny virus production occurs after the initiation of virus gene expression.  相似文献   

20.
Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian skin provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号