首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual and diel oxygen regime in two polder ditches   总被引:1,自引:0,他引:1  
The oxygen regime of two polder ditches and two enclosures within these ditches was studied. Continous oxygen temperature and light measurements were performed for 24-hour periods each month during two and a half year in the ditches and one year in the enclosures. Oxygen concentrations between 0 and 23 ppm were found, with diurnal ranges as large as 18 ppm. Steep gradients between bottom and surface could develop, but mostly disappeared during nightly turnover. The 10-percentile of the surface water measured between 9 and 17 hours was above 3 ppm, fullfilling the Dutch standards for this type of ecosystems. The oxygen concentrations near the bottom, however, could drop to zero and during the night surface concentrations below 1 ppm were measured. Based on average oxygen saturation values it is concluded that in the open water of the ditches oxygen consumption prevailed while in the enclosures oxygen production was most important. Based on the mass balance equation gross primary production and respiration were calculated. Annual average respiration varied between 2.5 and 6.6 g O2.m–2.d–1 and average gross primary production between 3.2 and 4.8 g O2.m–2.d–1. Maximum daily production and respiration were 15.9 and 22.3 g O2.m–2.d–1. These figures classify the polder ditches as highly productive aquatic ecosystems.  相似文献   

2.
Phosphorus release from the Loosdrecht Lakes sediments was studied, using a continuous flow reactor. The summer release maxima were 4 mg P.m–2.d–1 in 1984 and 1.4 mg P.m–2.d–1 in 1985. Temperature and downward seepage controlled release rates to a great extent, the pH of the overlying water being only of minor importance. From these results it could be concluded that release processes might be driven by mineralization of particulate organic phosphorus in the sediment. Pore water studies in the sediments of the release reactor confirmed this hypothesis. From the profiles phosphorus dissolution rates were calculated.  相似文献   

3.
Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M–2 day–1 and 100–200 mg P m–1 day–1. Average external loading during this period was about 350 mg N m–2 day–1 and 5 mg P m–2 day–1, respectively.Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m–2 day–1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.  相似文献   

4.
The contribution of sediment release to the phosphorus budget of hypereutrophic Onondaga Lake was determined through laboratory measurements made on intact cores. Rates ranged from 9–21 mg P m–2 d–1 with a mean of 13 mg P m–2 d–1, values similar to those observed in other lakes of comparable trophic state. There was no statistically significant trend in rates in time (July versus September) or in space (location along the major N/S axis of the lake). Rates of sediment phosphorus release measured in the laboratory compared favorably with the observed rate of soluble reactive phosphorus accumulation in the lake's hypolimnion. The sediments are the second largest source of phosphorus for Onondaga Lake, contributing 24% of the overall phosphorus load to the system.  相似文献   

5.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

6.
Impact of drying and re-wetting on N,P and K dynamics in a wetland soil   总被引:11,自引:0,他引:11  
Venterink  H. Olde  Davidsson  T.E.  Kiehl  K.  Leonardson  L. 《Plant and Soil》2002,243(1):119-130
As increased nutrient availability due to drainage is considered a major cause of eutrophication in wetlands rewetting of drained wetlands is recommended as a restoration measure. The effect of soil drying and rewetting on the contribution of various nutrient release or transformation processes to changed nutrient availability for plants is however weakly understood. We measured effects of soil drying and re-wetting on N mineralization, and denitrification, as well as on release of dissolved organic nitrogen (DON), phosphorus, and potassium in incubated soil cores from a wet meadow in southern Sweden. Additionally, the impact of re-wetting with sulphate-enriched water was studied. Soil drying stimulated N mineralization (3 times higher) and reduced denitrification (5 times lower) compared to continuously wet soil. In the wet cores, denitrification increased to 20 mg N m–2 d–1, which was much higher than denitrification measured in the field. In the field, increased inorganic-N availability for plants due to drainage seemed primarily to be caused by increased N mineralization, and less by decreased denitrification. Soil drying also stimulated the release of DON and K, but P release was not affected. Re-wetting of dried soil cores strongly stimulated denitrification (up to 160 mg N m–2 d–1), but N mineralization was not significantly decreased, neither were DON or K release. In contrast, the extractable P pool increased upon soil wetting. Re-wetting with sulphate-enriched water had no effect on any of the nutrient release or transformation rates. We conclude that caution is required in re-wetting of drained wetlands, because it may unintendently cause internal eutrophication through an increased P availability for plants.  相似文献   

7.
Results are presented of in situ benthic phosphorus release experiments in an undercut bank of an impounded river. Due to high sedimentation of phytoplankton biomass high oxygen consumption rates between 259.4 and 947.0 mg O2 m–2 d–1 developed, leading to almost anaerobic conditions and phosphorus releases between 175.2 and 236.3 mgP m–2 d–1 over a period of 18 days.In a second series of experiments the water column overlying the sediment was aerated, resulting in much lower P release rates (1.1 to 32.9 mgP m–2 d–1) over a period of 30 days. The influence of pH and nitrate was studied by adjusting pH and adding NO3 to the overlying water. Increasing pH positively affected P release rates and enhanced NO3 levels led to an increase of benthic P release, too.  相似文献   

8.
Critical nutrient loads to prevent duckweed dominance loads in polder ditches were assessed using the eutrophication model PCDitch. In this article the ecological target was set at 50% duckweed coverage. This may be very high for ditches with a nature function, but is not unreasonable for ditches in agricultural areas, with upwelling nutrient rich groundwater, run-off and drainage. Since the change from a ditch with submersed vegetation to duckweed coverage is often a sudden shift, the choice of the amount of duckweed coverage does not influence the calculated loading very much. The main topic of this paper is to present a method to calculate critical loads of nutrients when ecological targets have been set. Sediment type, residence time and water depth influenced the critical loading rates. The calculated critical phosphorus load ranged from 1.8 to 10.2 g P m−2 year−1, while the calculated critical nitrogen load stretched from 12.1 to 43.8 g N m−2 year−1. The concentration ranges that were derived from the loading rate were 0.19–0.42 mg P l−1 and 1.3–3.3 mg N l−1. Since PCDitch does not distinguish between Lemna spp. and Azolla spp., no definite conclusions were drawn concerning the effects of nitrogen reduction. In a model situation a pristine ditch was loaded with phosphorus, which resulted into complete duckweed coverage during summer within a few years. When reducing the phosphorus load, it took 10 years before the original situation was reached again. Dredging would accelerate the process of recovery significantly, because the water depth would increase and the phosphorus release from the sediments in summer would decrease. Received September 2003; accepted in revised form February 2005  相似文献   

9.
During each of the first 8 years following an 80–90% reduction in external phosphorus loading of shallow, hypertrophic Lake Søbygaard, Denmark in 1982, phosphorus retention was found to be negative. Phosphorus release mainly occurred from April to October, net retention being close to zero during winter. Net internal phosphorus loading was 8 g P m–2 y–1 in 1983 and slowly decreased to 2 g P m–2 y–1 in 1990, mainly because of decreasing sediment phosphorus release during late summer and autumn. The high net release of phosphorus from Lake Søbygaard sediment is attributable to a very high phosphorus concentration and to a high transport rate in the sediment caused by bioturbation and gas ebullition. Sediment phosphorus concentration mainly decreased at a depth of 5 to 20 cm, involving sediment layers down to 23 cm. Maximum sediment phosphorus concentration, which was 11.3 mg P g–1 dw at a depth of 14–16 cm in 1985, decreased to 8.6 mg P g–1 dw at a depth of 16–18 cm in 1991. Phosphorus fractionation revealed that phosphorus release was accompanied by a decrease in NH4Cl-P + NaOH-P and organic phosphorus fractions. HCl-P increased at all sediment depths. The Fe:P ratio in the superficial layer stabilized at approximately 10. Net phosphorus release can be expected to continue for another decade at the present release rate, before an Fe:P ratio of 10 will be reached in the sediment layers from which phosphorus is now being released.  相似文献   

10.
The shallow, brackish (11–18% salinity) Roskilde Fjord represents a eutrophication gradient with annual averages of chlorophyll, ranging from 3 to 25 mg chl a m–3. Nutrient loadings in 1985 were 11.3–62.4 g N m–2 yr–1 and 0.4–7.3 g P m–2 yr–1. A simple one-layer advection-diffusion model was used to calculate mass balances for 7 boxes in the fjord. Net loss rates varied from –32.2 to 17.9 g P m–2 yr–1 and from –3.3 to 66.8 g N m–2, corresponding to 74% of the external P-loading and 88% of the external N-loading to the entire estuary.Gross sedimentation rates measured by sediment traps were between 7 and 52 g p m–2 yr–1 and 50 and 426 g N M–2 yr–1, respectively. Exchangeable sediment phosphorus varied in annual average between 2.0 and 4.8 g P m–2 and exchangeable sediment nitrogen varied from 1.9 to 33.1 g N m–1. Amplitudes in the exchangeable pools followed sedimentation peaks with delays corresponding to settling rates of 0.3 m d–1. Short term nutrient exchange experiments performed in the laboratory with simultaneous measurements of sediment oxygen uptake showed a release pattern following the oxygen uptake, the changes in the exchangeable pools and the sedimentation peaks.The close benthic-pelagic coupling also exists for the denitrification with maxima during spring of 5 to 20 mmol N m–2 d–1. Denitrification during the nitrogen-limited summer period suggests dependence on nitrification. Comparisons with denitrification from other shallow estuaries indicate a maximum for denitrification in estuaries of about 250 µmol N m–2 h–2 achieved at loading rates of about 25–125 g N m–2 yr–1.  相似文献   

11.
Wind-induced sediment resuspension occurs frequently in the shallow and eutrophic Lake Arresø, Denmark. The impact of resuspension on internal phosphorus loading was investigated by laboratory experiments studying P-release from the undisturbed sediment surface and by experiments simulating resuspension events.Phosphorus release from undisturbed sediment sampled in May and August was 12 mg and 4 mg m–2 d–1, respectively. During experimental simulation of resuspension, soluble reactive phosphate (SRP) increased by 20–80 µg l–1, which indicates that a typical resuspension event in the lake would be accompanied by the release of 150 mg SRP m–2. The internal P loading induced by resuspension is estimated to be 60–70 mg m–2 d–1, or 20–30 times greater than the release from undisturbed sediment.SRP release during simulation of resuspension was mainly dependent on the equilibrium conditions in the water column and was basically independent of the increase in suspended solids and the duration of resuspension. A second simulation of resuspension conducted 26 hours later, did not result in any further release of SRP from sediment sampled in May. In contrast, there was an additional SRP release from sediment sampled in August, indicating that an exchangable P pool, capable of altering equilibrium conditions, is built up between resuspension events.It is concluded that resuspension, by increasing the P flux between sediment and water, plays a major role in the maintenance of the high nutrient level in Lake Arresø. A relatively high release rate is maintained during resuspension because of the low Fe:P ratio and the high concentration of NH4Cl-extractable P in the sediment.  相似文献   

12.
Prego  Ricardo 《Hydrobiologia》2002,(1):161-171
Inorganic and organic nitrogen fluxes in the Ria Vigo have been quantified in order to recognise the contrasting nitrogen budget scenarios and understand the biogeochemical response to eutrophication events. According to the nitrogen biogeochemical pathways of the ria reservoir (photosynthesis, remineralization, denitrification, PON rain rate and sedimentation), three main seasonal behavioural trends are emphasised: (1) low inorganic nitrogen inputs and low organic nitrogen fluxes, (2) high inorganic nitrogen input and output, (3) high inorganic nitrogen input and high organic nitrogen output. The first scenario occurs in late spring and in summer during non-upwelling situations. The consumption of inorganic nitrogen by net photosynthesis is approximately 2 mol N s–1 and the ria is oligotrophic (12 mgC m–2 h–1). The outgoing estuarine residual current transports phytoplanktonic material towards the mouth of the ria whereupon it sediments and is remineralized as it falls to the lower water layers and the incoming residual current. The regenerated nitrogen is reintroduced to the photic ria layer which leads to the greatest reduction in dissolved oxygen concentration (50% of saturation). Recycled nutrients play an important role in primary production during this oligotrophic state of the ria. Thus, approximately half of the inorganic nitrogen utilised by photosynthesis is ammonium. The majority of PON is deposited inside the ria (0.8 mmol N m–2 d–1) and the denitrification rate is 0.3 mmol N2 m–2 d–1. The other two cases occur in winter and spring–summer with upwelling. In winter, estuarine circulation and freshwater contributions control the nitrogen cycle. The ria mainly exports nitrate (up to 14 mol N s–1) and so there is fertilisation but no eutrophication. In spring and summer, the nitrogen cycle is controlled by upwelling circulation. The inorganic nitrogen consumption by net photosynthesis is high, 7–14 mmol N m–2 d–1, and the ria is a natural eutrophic system (70 mgC m–2 h–1). Accordingly, 90% of organic nitrogen is synthesised from nitrate and the upwelling-increased circulation exports 6.5 mol N s–1 of organic nitrogen.  相似文献   

13.
Growth rates of the entire phytoplankton community of a brackish lagoon in northeastern Japan were estimated by measuring increasing chlorophyll a content in dialysis bags during the summer and early autumn of 1986. The chlorophyll a contents of lagoon water fluctuated between 20 and 200 mg m–3. At lower densities of phytoplankton (20–50 mg chl. a m–3), growth rates (the rate of increase of chlorophyll a) exceeded 1 turnover per day, while at higher densities (more than 50 mg chl. a m–3), the growth rate decreased rapidly. Tidal exchanges of chlorophyll a showed net exports of chlorophyll a from the lagoon to adjacent waters. The exchange rate of chlorophyll a was estimated to be 0.65 d–1. At about 140 mg m–3 of chlorophyll a concentration, the increase of chlorophyll in the lagoon water compensated for tidal export. Only a small proportion of primary production was consumed by zooplankton in the lagoon. There were also net exports of ammonium and phosphate from the lagoon. Nutrient flux from sediment exceeded the phytoplankton requirement and was the major source of the ammonium and phosphate exports from the lagoon. The low inorganic N/P atom supply ratio in the lagoon suggests that nitrogen is a major nutrient limiting phytoplankton growth.  相似文献   

14.
In 1984 the external phosphorus load of the shallow eutrophic Loosdrecht lakes was reduced from 3.3 to 1.0 mg m–2 d–1. The effect of phosphorus release from the sediment on lake restoration was investigated. Diffusive release under aerobic conditions (20 °C) decreased from 1 mg m–2 d–1 in 1984 to 0.3 mg m–2 d–1 in 1990. The generation of inorganic phosphorus due to mineralization during summer equals 3 mg m–2 d–1, which is much higher than the measured rate of diffusive release. Despite that, the phosphorus release is hardly stimulated by anaerobic conditions, which indicates that only a small amount of phosphorus is adsorbed by ferric iron in the top sediment layer. This apparent discrepancy is probably caused by the uptake of inorganic phosphorus uptake during resuspension and the loss of inorganic phosphorus with downward seepage.The estimated removal of phosphorus due to downward seepage of 0.8 mg m–2 d–1 agrees well with the average phosphorus retention in the lake. This indicates that sediment burial and diagenesis are unimportant mechanisms for withdrawing phosphorus from the nutrient cycle.Between 1982 and 1991 the total phosphorus content of the upper 2 cm of the sediment decreased from 0.94 to 0.60 g kg–1 DW. At present, about 20% of total phosphorus in this layer is potentially bioavailable, but largely incorporated in easily degradable organic matter. This pool is much smaller in deeper layers. Based on the estimated and measured rates and pool sizes, the annual average phosphorus cycle in the lakes was modelled to evaluate the effects of various restoration measures. The main predictions of the model are: 1) further reduction of the external load may cause a gradual decrease of the total phosphorus concentration in the lake water; 2) dredging and iron addition, without reduction of the external load, may give a rapid improvement followed by a slow return to the present situation; and 3) reduction of the external load, combined with a cut off of downward seepage will not improve the water quality.  相似文献   

15.
The seasonal variation in primary production, individual numbers, and biomass of phyto- and zooplankton was studied in the River Danube in 1981. The secondary production of two dominant zooplankton species (Bosmina longirostris and Acanthocyclops robustus) was also estimated. In the growing season (April–Sept.) individual numbers dry weights and chlorophyll a contents of phytoplankton ranged between 30–90 × 106 individuals, l–1, 3–12 mg l–1, and 50–170 µg l–1, respectively. Species of Thalassiosiraceae (Bacillariophyta) dominated in the phytoplankton with a subdominance of Chlorococcales in summer. Individual numbers and dry weights of crustacean zooplankton ranged between 1400–6500 individuals m–3, and 1.2–12 mg m–3, respectively. The daily mean gross primary production was 970 mg C m–3 d–1, and the net production was 660 mg C m–3 d–1. Acanthocyclops robustus populations produced 0.2 mg C m–3 d–1 as an average, and Bosmina longirostris populations 0.07 mg C m–3 d–1. The ecological efficiency between phytoplankton and crustacean zooplankton was 0.03%.  相似文献   

16.
Yu. I. Sorokin 《Hydrobiologia》1992,242(2):105-114
Exchange of phosphate between components of the reef bottom and the water column were studied on reefs around Heron Island (Great Barrier Reef), both in aquaria and in in situ enclosures, using radioactive phosphorus (32P) as a tracer. Living corals, dead corals, coral rubble overgrown with periphyton, and soft sediments of coral sand were used in experiments. In all of these components of bottom reef biotopes, two opposite flows of inorganic phosphate were recorded and measured, i.e. the rate of PO4-P uptake from water (Ac), and its release (Ae). At ambient PO4-P concentrations in water of 0.1– 0.3 µmoll–1, both flows varied in living corals and coral rubble between 10 and 70 µg P kg–1 h–1, 3–10 mg P m–2 day–1, and in coral sand between 10 and 30 µg P kg–1 h–1, or 2–7 mg P m–2 day–1. Under the latter concentration range (which is typical for coral reef areas), the reciprocal PO4-P flows almost balanced each other, so that net uptake (At) was very low. Often it approached zero or was positive, showing that a net PO4-P release had taken place. The uptake flow (Ac) in living coral was much more dependent on the PO4-P content in overlying water than was the release flow (Ae). The influence of conditions of illumination upon the values of Ac and Ae was comparatively low. The data obtained are used to discuss problems of phosphorus balance and dynamics in coral reef ecosystems.  相似文献   

17.
Summary During five 28-hours measurements in 1981, the oxygen production and consumption in an eelgrass community in saline Lake Grevelingen were investigated using light plexiglass enclosures. Applying a conversion factor of 0.29 the amount of carbon fixed and the amount of organic carbon mineralized were estimated. Gross and net production were estimated over 24-hours periods.There appeared to be a good correlation between production and insolation on the water surface. For every measurement period the production as a function of light and aboveground eelgrass biomass in the enclosure were calculated. This showed a maximum of 5.10–6 mg C.J.–1 g dry weight–1 in April and minimum of 1.4.10–6 mg C.J.–1 g–1 in August.Using the calculated production coefficients, the insolation and the eelgrass biomass the gross production, net production and consumption during the growing season of 1976 were calculated. Gross production amounted to 340 gC.m–2, and net production came to 130 g C.m–2. Approximately 60 gC.m–2 was respired by the eelgrass plants while the remaining 150 gC.m–2 was consumed or mineralized by other organisms on the sampling spot. Approximately 120 g C.m–2.yr–1 was transported by wind and wave action towards the eastern part of the lake where it became anaerobically degraded. This resulted in the formation of sulfide and methane.Communication no. 236 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.  相似文献   

18.
To be able to estimate the cumulative carbon budget at broader scales, it is essential to understand net ecosystem exchanges (NEE) of carbon and water in various ages and types of ecosystems. Using eddy-covariance (EC) in Douglas-fir dominated forests in the Wind River Valley, Washington, USA, we measured NEE of carbon, water, and energy from July through September in a 40-year-old stand (40YR) in 1998, a 20-year-old stand (20YR) in 1999, and a 450-year-old stand (450YR) during both years. All three stands were net carbon sinks during the dry, warm summers, with mean net daily accumulation of –0.30 g C m–2 d–1, –2.76 g C m–2 d–1, and –0.38 g C m–2 d–1, respectively, in the 20YR, 40YR, and 450YR (average of 1998, 1999) stands; but for individual years, the 450YR stand was a carbon source in 1998 (0.51 g C m–2 d–1) and a sink in 1999 (–1.26 g C m–2 d–1). The interannual differences for the summer months were apparent for cumulative carbon exchange at the 450YR stand, which had 46.9 g C m–2 loss in 1998 and 115.9 g C m–2 gain in 1999. As predicted, the 40YR stand assimilated the most carbon and lost the least amount of water to the atmosphere through evapotranspiration.  相似文献   

19.
Cobo  J. G.  Barrios  E.  Kass  D. C. L.  Thomas  R. J. 《Plant and Soil》2002,240(2):331-342
The decomposition and nutrient release of 12 plant materials were assessed in a 20-week litterbag field study in hillsides from Cauca, Colombia. Leaves of Tithonia diversifolia (TTH) and Indigofera constricta (IND) decomposed quickly (k=0.035±0.002 d–1), while those of Cratylia argentea (CRA) and the stems evaluated decomposed slowly (k=0.007±0.002 d–1). Potassium presented the highest release rates (k>0.085 d–1). Rates of N and P release were high for all leaf materials evaluated (k>0.028 d–1) with the exception of CRA (N and P), TTH and IND (P). While Mg release rates ranged from 0.013 to 0.122 d–1, Ca release was generally slower (k=0.008–0.041 d–1). Initial quality parameters that best correlated with decomposition (P>0.001) were neutral detergent fibre, NDF (r=–0.96) and in vitro dry matter digestibility, IVDMD (r=0.87). It is argued that NDF or IVDMD could be useful lab-based tests during screening of plant materials as green manures. Significant correlations (P>0.05) were also found for initial quality parameters and nutrient release, being most important the lignin/N ratio (r=–0.71) and (lignin+polyphenol)/N ratios (r=–0.70) for N release, the C/N (r=0.70) and N/P ratios (r=–0.66) for P release, the hemicellulose content (r=–0.75) for K release, the Ca content (r=0.82) for Ca release, and the C/P ratio (r=0.65) for Mg release. After 20 weeks, the leaves of Mucuna deerengianum released the highest amounts of N and P (144.5 and 11.4 kg ha–1, respectively), while TTH released the highest amounts of K, Ca and Mg (129.3, 112.6 and 25.9 kg ha–1, respectively). These results show the potential of some plant materials studied as sources of nutrients in tropical hillside agroecosystems.  相似文献   

20.
Gross and net primary production together with chlorophyll-a biomass were investigated with respect to depth and diurnal changes in three categories of inland waters (reservoirs, temporary ponds, brackish water lagoons) in Sri Lanka. Ten field sites, in both the dry and wet zones of the island, were investigated. Bimodal productivity profiles were recorded in two of the three reservoirs studied. The diel pattern of net photosynthetic rate varied between sites although peak photosynthetic efficiency occurred at solar noon. Surface photoinhibition was characteristic of the reservoirs and brackish water lagoons but not of the temporary ponds. Mean gross primary production was 3.02 g C m–2 d–1 but was higher in the temporary ponds than in the reservoirs. The gross primary production in the brackish water Koggala Lagoon at 0.08 g C m–2 d–1 is a record low for tropical lagoons and was 2.5 times less than the two other lagoons investigated. Variability in net primary production between sites was similar to the variation in gross production with a relatively low mean value for tropical inland waters of 0.495 C m–2 d–1. Mean maximum photosynthetic rate was 0.30 mg C m–3 h–1 but was lower in the reservoirs than in the temporary ponds and lagoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号