首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium (Ca2+) is sequestered into vacuoles of oat root cells through a H+/Ca2+ antiport system that is driven by the proton-motive force of the tonoplast H+-translocating ATPase. The antiport has been characterized directly by imposing a pH gradient in tonoplast-enriched vesicles. The pH gradient was imposed by diluting K+-loaded vesicles into a K+-free medium. Nigericin induced a K+/H+ exchange resulting in a pH gradient of 2 (acid inside). The pH gradient was capable of driving 45Ca2+ accumulation. Ca2+ uptake was tightly coupled to H+ loss as increasing Ca2+ levels progressively dissipated the steady state pH gradient. Ca2+ uptake displayed saturation kinetics with a Km(app) for Ca2+ of 10 microM. The relative affinity of the antiporter for transport of divalent cations was Ca2+ greater than Sr2+ greater than Ba2+ greater than Mg2+. La3+ or Mn2+ blocked Ca2+ uptake possibly by occupying the Ca2+-binding site. Ruthenium red (I50 = 40 microM) and N,N'-dicyclohexylcarbodiimide (I50 = 3 microM) specifically inhibited the H+/Ca2+ antiporter. When driven by pH jumps, the H+/Ca2+ exchange generated a membrane potential, interior positive, as shown by [14C]SCN accumulation. Furthermore, Ca2+ uptake was stimulated by an imposed negative membrane potential. The results support a simple model of one Ca2+ taken up per H+ lost. The exchange transport can be reversed, as a Ca2+ gradient (Ca2+in greater than Ca2+out) was effective in forming a pH gradient (acid inside). We suggest that the H+/Ca2+ exchange normally transports Ca2+ into the vacuole; however, under certain conditions, Ca2+ may be released into the cytoplasm via this antiporter.  相似文献   

2.
Lactic acid bacteria are able to generate a protonmotive force across the cytoplasmic membrane by various metabolic conversions without involvement of substrate level phosphorylation or proton pump activity. Weak acids like malate and citrate are taken up in an electrogenic process in which net negative charge is translocated into the cell thereby generating a membrane potential. The uptake is either an exchange process with a metabolic end-product (precursor/ product exchange) or a uniporter mechanism. Subsequent metabolism of the internalized substrate drives uptake and results in the generation of a pH gradient due to the consumption of scalar protons. The generation of the membrane potential and the pH gradient involve separate steps in the pathway. Here it is shown that they are nevertheless coupled. Analysis of the pH gradient that is formed during malolactic fermentation and citrate fermentation shows that a pH gradient, inside alkaline, is formed only when the uptake system forms a membrane potential, inside negative. These secondary metabolic energy generating systems form a pmf that consists of both a membrane potential and a pH gradient, just like primary proton pumps do. It is concluded that the generation of a pH gradient, inside alkaline, upon the addition of a weak acid to cells is diagnostic for an electrogenic uptake mechanism translocating negative charge with the weak acid.  相似文献   

3.
The mechanism and energetics of citrate transport in Leuconostoc oenos were investigated. Resting cells of L. oenos generate both a membrane potential (delta psi) and a pH gradient (delta pH) upon addition of citrate. After a lag time, the internal alkalinization is followed by a continuous alkalinization of the external medium, demonstrating the involvement of proton-consuming reactions in the metabolic breakdown of citrate. Membrane vesicles of L. oenos were prepared and fused to liposomes containing cytochrome c oxidase to study the mechanism of citrate transport. Citrate uptake in the hybrid membranes is inhibited by a membrane potential of physiological polarity, inside negative, and driven by an inverted membrane potential, inside positive. A pH gradient, inside alkaline, leads to the accumulation of citrate inside the membrane vesicles. Kinetic analysis of delta pH-driven citrate uptake over a range of external pHs suggests that the monovalent anionic species (H2cit-) is the transported particle. Together, the data show that the transport of citrate is an electrogenic process in which H2cit- is translocated across the membrane via a uniport mechanism. Homologous exchange (citrate/citrate) was observed, but no evidence for a heterologous antiport mechanism involving products of citrate metabolism (e.g., acetate and pyruvate) was found. It is concluded that the generation of metabolic energy by citrate utilization in L. oenos is a direct consequence of the uptake of the negatively charged citrate anion, yielding a membrane potential, and from H(+)-consuming reactions involved in subsequent citrate metabolism, yielding a pH gradient. The uptake of citrate is driven by its own concentration gradient, which is maintained by efficient metabolic breakdown (metabolic pull).  相似文献   

4.
Transmembrane movement of dopamine in response to K+ or H+ ion gradients has been investigated. It is shown that dopamine can accumulate rapidly into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine exhibiting either a K+ diffusion potential (delta psi; negative inside) or a pH gradient (inside acidic). This can result in entrapped dopamine concentrations of 30-40 mM and inside-outside concentration gradients of nearly 300-fold. The transmembrane dopamine gradients formed in LUV systems exhibiting delta pH (inside acidic) indicate that the transport process can be dictated by movement of the neutral form of dopamine which redistributes according to a simple Henderson-Hasselbach equilibrium. The mechanism of dopamine transport in response to a valinomycin-induced K+ potential is more complex. Although generation of a K+ diffusion potential results in acidification of the vesicle interior, the magnitude of the induced delta pH (approx. 1 pH unit) is insufficient to account for the dopamine concentration gradient achieved (greater than 200-fold). Further, data presented here suggest that higher uptake levels of dopamine can be achieved when certain anions (ATP and citrate) are entrapped within the LUV system. These anions may complex with the protonated form of dopamine creating a non-equilibrium trapping phenomena resulting in interior concentrations of dopamine in excess of that predicted by a simple Henderson-Hasselbach equilibrium.  相似文献   

5.
The effect of NH4Cl on release of amine and amino acid transmitters from rat brain synaptosomes was investigated. Ammonia (0.1-10 mM) stimulated the secretion of dopamine and 5-hydroxytryptamine in a dose-dependent manner, in a process which was additive with the effect of 40 mM K+, almost unaffected by withdrawal of Ca2+, and markedly decreased by increasing [H+] in the medium. The NH4Cl-induced dopamine efflux, in contrast to that caused by high [K+]e, was inhibited by benztropine. The release of gamma-aminobutyric acid, aspartate, and glutamate was unaltered by [NH4Cl] less than 5 mM, but somewhat stimulated at higher levels. Transmembrane pH gradient, acid inside, was dissipated by NH4Cl in a concentration-dependent manner and the internal alkalinization correlated with the stimulation of the rate of dopamine efflux. Transmembrane electrical potential was unaffected by [ammonia] less than 5 mM, but a small depolarization was observed at higher levels. It is postulated that ammonia-induced alkalinization of the intrasynaptic storage granules causes extrusion of amines into the cytoplasm and their subsequent leakage into the medium through a reversal of the plasma membrane transporters. A lack of correlation between the release of amino acid neurotransmitters and the dissipation of the delta pH suggests that in rat brain intrasynaptic vesicles, acidic inside, are unlikely to store substantial amounts of gamma-aminobutyric acid, aspartate, or glutamate.  相似文献   

6.
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.  相似文献   

7.
The rate of active H+ secretion (JH) across the luminal cell membrane of the turtle bladder decreases linearly with the chemical (delta pH) or electrical potential gradient (delta psi) against which secretion occurs. To examine the control of JH from the cell side of the pump, acid-base changes were imposed on the cellular compartment by increasing serosal[HCO3-] at constant PCO2 or by varying PCO2 at constant [HCO3-]. When serosal [HCO3-] was increased from 0 to 60 mM, cell [H+] decreased, as estimated by the 5,5-dimethyloxazoladine-2,4- dione method. JH was a saturable function of cell [H+], with an apparent Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal [HCO3-], the PCO2 required to reach a maximal JH increased with [HCO3-] so that JH was a function of cell [H+] rather than of cell [HCO3-] or CO2. The proton pump was controlled asymmetrically with respect to the pH component of the electrochemical potential for protons, microH. On the cell side of the pump, a delta pH of < 1 U was required to vary JH between maximal and zero values, whereas on the luminal side a delta pH of 3 U was required. Cell [H+] regulates JH by determining the availability of H+ to the pump in a relationship resembling Michaelis-Menten kinetics. Increasing luminal [H+] generates an energy barrier at a luminal pH near 4.4 that equals the free energy (per H+ translocated) of the metabolic driving reaction.  相似文献   

8.
Spherical droplets, derived from Physarum plasmodia by incubation in 10 mM caffeine, seemed to be an excellent system for electrophysiological studies because they were large (less than or equal to 300 micrometer in diameter) and because they tolerated intracellular electrodes filled with 3 M KCl and 10 mM EDTA for a few hours. Intact plasmodia, by contrast, gave valid records for only a few minutes. Under standard conditions ([K+]o = 1 mM, [Na+]o = 5 mM, [Ca++]0 = 0.5 mM, [Mg++]o = 2 mM, and [Cl-]o = 6 mM at pH 7.0), the potential difference across droplet membranes was -80 to -120mV, interior negative. The membrane potential was only slightly sensitive to concentration changes for the above-mentioned ions, and was far negative to the equilibrium diffusion potentials calculated from the known internal contents of K, Na, Ca, Mg, and CL (29.4, 1.6, 3.7, 6.5, and 27.8 mmol/kg, respectively). Variations of external pH did have a strong influence on the membrane potential, yielding a slope of 59 mV/pH between pH 6.5 and 5.5. In this pH range, however, the equilibrium potential for H+ (assuming 6.2 less than or equal to pHi less than or equal to 7.0) was greater than 75 mV positive to the observed membrane potential. Membrane potential was directly responsive to metabolic events, being lowered by potassium cyanide, and by cooling from 25 to 12 degrees C. This ensemble of results strongly indicates that the major component of membrane potential in plasmodial droplets of Physarum is generated by an electrogenic ion pump, probably one extruding H+ ions.  相似文献   

9.
Protons as substitutes for sodium and potassium in the sodium pump reaction   总被引:6,自引:0,他引:6  
The role of protons as substitutes for Na+ and/or K+ in the sodium pump reaction was examined using inside-out membrane vesicles derived from human red cells. Na+-like effects of protons suggested previously (Blostein, R. (1985) J. Biol. Chem. 260, 829-833) were substantiated by the following observations: (i) in the absence of extravesicular (cytoplasmic) Na+, an increase in cytoplasmic [H+] increased both strophanthidin-sensitive ATP hydrolysis (nu) and the steady-state level of phosphoenzyme, EP, and (ii) as [H+] is increased, the Na+/ATP coupling ratio is decreased. K+-like effects of protons were evidenced in the following results: (i) an increase in nu, decrease in EP, and hence increase in EP turnover (nu/EP) occur when intravesicular (extracellular) [H+] is increased; (ii) an increase in the rate of Na+ influx into K+(Rb+)-free inside-out vesicles and (iii) a decrease in Rb+/ATP coupling occur when [H+] is increased. Direct evidence for H+ being translocated in place of cytoplasmic Na+ and extracellular K+ was obtained by monitoring pH changes using fluorescein isothiocyanate-dextran-filled vesicles derived from 4',4-diisothiocyano-2',2-stilbene disulfonate-treated cells. With the initial pHi = pHo = pH 6.2, a strophanthidin-sensitive decrease in pHi was observed following addition of ATP provided the vesicles contained K+. This pH gradient was abolished following addition of Na+. With alkali cation-free inside-out vesicles, a strophanthidin-sensitive increase in pH was observed upon addition of both ATP and Na+. The foregoing changes in pHi were not affected by the addition of tetrabutylammonium to dissipate any membrane potential and were not observed at pH 6.8. These ATP-dependent cardiac glycoside-sensitive proton movements indicate Na,K-ATPase mediated Na+/H+ exchange in the absence of extracellular K+ as well as H+/K+ exchange in the absence of cytoplasmic Na+.  相似文献   

10.
The principal aim of the present study was to investigate the effects of variation in proton gradient and membrane potential on the transport of glycyl-L-glutamine (Gly-Gln) by renal brush border membrane vesicles. Under our conditions of transport assay, Gly-Gln was taken up by brush border membrane vesicles almost entirely as intact dipeptide. This uptake was mediated by two transporters shared by other dipeptides and characterized as the high affinity (Kt = 44.1 +/- 11.2 microM)/low capacity (Vmax = 0.41 +/- 0.03 nmol/mg protein/5 s) and low affinity (Kt = 2.62 +/- 0.50 mM)/high capacity (Vmax 4.04 +/- 0.80 nmol/mg protein/5 s) transporters. In the absence of a pH gradient, only the low affinity system was operational, but with a reduced transport capacity. Imposing a pH gradient of 1.6 pH units increased the Vmax of both transporters. Kinetic analysis of the rates of Gly-Gln uptake as a function of external pH revealed Hill coefficients of close or equal to 1, indicating that transporters contain only one binding site for the interaction with external H+. The effects of membrane potential on Gly-Gln uptake were investigated with valinomycin-induced K+ diffusion potentials. The velocity of the high affinity system but not of the low affinity system increased linearly with increasing inside-negative K+ diffusion potentials (p less than 0.01). The Kt of neither system was affected by alterations in either pH gradient or membrane potential. We conclude that (a) the high affinity transporter is far more sensitive to changes in proton gradient and membrane potential than the low affinity transporter and (b) in the presence of a pH gradient, transport of each dipeptide molecule requires cotransport of one hydrogen ion to serve as the driving force.  相似文献   

11.
Uptake of guanidine, an endogenous organic cation, into brush-border membrane vesicles isolated from human term placentas was investigated. Initial uptake rates were manyfold greater in the presence of an outward-directed H+ gradient ([pH]o greater than [pH]i) than in the absence of a H+ gradient ([pH]o = [pH]i). Guanidine was transiently accumulated inside the vesicles against a concentration gradient in the presence of the H+ gradient. The H+ gradient-dependent stimulation of guanidine uptake was not due to a H+-diffusion potential because an ionophore (valinomycin or carbonylcyanide p-trifluoromethoxyphenylhydrazone)-induced inside-negative membrane potential failed to stimulate the uptake. In addition, uphill transport of guanidine could be demonstrated even in voltage-clamped membrane vesicles. The H+ gradient-dependent uptake of guanidine was inhibited by many exogenous as well as endogenous organic cations (cis-inhibition) but not by cationic amino acids. The presence of unlabeled guanidine inside the vesicles stimulated the uptake of labeled guanidine (trans-stimulation). These data provide evidence for the presence of an organic cation-proton antiporter in human placental brush-border membranes. Kinetic analysis of guanidine uptake demonstrated that the uptake occurred via two saturable, carrier-mediated transport systems, one being a high affinity, low capacity type and the other a low affinity, high capacity type. Studies on the effects of various cations on the organic cation-proton antiporter and the Na+-H+ exchanger revealed that these two transport systems are distinct.  相似文献   

12.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

13.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

14.
Ammonia/potassium exchange in methanogenic bacteria   总被引:7,自引:0,他引:7  
Methanospirillum hungatei exposed to ammonia in a K+-free buffer lost up to 98% of the cytoplasmic K+ through an ammonia/K+ exchange reaction. The exchange was immediate, and occurred in cells poisoned by air or by other metabolic inhibitors. Additions of NH4OH or various NH+4 salts (or methylamine) were most effective in causing K+ depletion in media of alkaline pH, suggesting that NH3 was the chemical species crossing the membrane. In alkaline media, the exchange reaction resulted in a dissipation of the transmembrane pH gradient (inside acidic), but had only small effects on the membrane potential until concentrations of ammonia were used above those required to abolish the K+ gradient. Through the use of NH4Cl to vary the cytoplasmic pH at a constant acidic external pH, and NH4OH to abolish the transmembrane pH gradient at various alkaline external pH values, we conclude that methanogenesis is sensitive to both the pH of the cytoplasm and the medium. Methanogenesis in Msp. hungatei and Methanosarcina barkeri was inhibited dramatically at external pH values more acidic than 6.5 or more alkaline than 7.5. Dramatic K+ depletion in response to ammonia additions at pH 8.0 occurred with Ms. barkeri, another strain of Msp. hungatei, Escherichia coli, and Bacillus polymyxa. In several other methanogens, ammonia/potassium exchange was hardly detected.  相似文献   

15.
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

16.
Na+/H+ exchange in mitochondria as monitored by BCECF fluorescence   总被引:2,自引:0,他引:2  
A Kapus  E Ligeti  A Fonyó 《FEBS letters》1989,251(1-2):49-52
The recently developed method of loading isolated heart mitochondria with the fluorescent pH indicator, BCECF, was applied to monitor the Na+o/H+i exchange process from the matrix side of the membrane. The Na+-induced changes in the pH of the matrix (pHm) showed that: (i) the Na+o/H+i exchange followed Michaelis-Menten kinetics with respect to external Na+ with a Km of approx. 20 mM; (ii) in contrast to this, the dependence of the exchange rate on the matrix [H+] did not obey the Michaelian model. No Na+-induced alkalinization occurred above a pHm of 7.45 +/- 0.09 (n = 4). Below this value the reciprocal of the transport rate and that of the matrix [H+] deviated upwardly from the straight line. The results suggest that internal H+ might exert allosteric control on the mitochondrial Na+/H+ exchange process.  相似文献   

17.
Na+/H+ exchange activity in the plasma membrane of Arabidopsis   总被引:7,自引:0,他引:7       下载免费PDF全文
In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt.  相似文献   

18.
The characteristics of lactate transport in brush-border membrane vesicles isolated from normal human full-term placentas were investigated. Lactate transport in these vesicles was Na+-independent, but was greatly stimulated when the extravesicular pH was made acidic. In the presence of an inwardly directed H+ gradient ([H+]o greater than [H+]i), transient uphill transport of lactate could be demonstrated. This H+ gradient-dependent stimulation was not a result of a H+ diffusion potential. Transport of lactate in the presence of the H+ gradient was not inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or by furosemide, ruling out the participation of an anion exchanger in placental lactate transport. Many monocarboxylates strongly interacted with the lactate transport system, whereas, with the single exception of succinate, dicarboxylates did not. The monocarboxylates pyruvate and lactate, but not the dicarboxylate succinate, when present inside the vesicles, were able to exert a trans-stimulatory effect on the uptake of radiolabeled lactate. Kinetic analyses provided evidence for a single transport system with a Kt of 4.1 +/- 0.4 mM for lactate and a Vmax of 54.2 +/- 9.9 nmol/mg of protein/30 s. Pyruvate inhibited lactate transport competitively, by reducing the affinity of the system for lactate without altering the maximal velocity. It is concluded that human placental brush-border membranes possess a transport system specific for lactate and other monocarboxylates and that this transport system is Na+-independent and is energized by an inwardly directed H+ gradient. Lactate-H+ symport rather than lactate-OH- antiport appears to be the mechanism of the H+ gradient-dependent lactate transport in these membranes.  相似文献   

19.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

20.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号