共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A protocol for the incorporation of SeMet into yeast proteins is described. Incorporation at a level of about 50% suffices for the location of Se sites in an anomalous difference Fourier map of the 0.5 MDa yeast RNA polymerase II. This shows the utility of the approach as an aid in the model-building of large protein complexes. 相似文献
4.
5.
6.
7.
8.
Cracking the RNA polymerase II CTD code 总被引:3,自引:0,他引:3
9.
G A Bitter 《Analytical biochemistry》1983,128(2):294-301
A rapid procedure for the purification of RNA polymerase II from Saccharomyces cerevisiae is described. Total RNA polymerase activity was solubilized from whole cells by sonication in 0.32 M (NH4)2SO4 and RNA polymerase II purified by polyethylenimine fractionation, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, DEAE-Sephadex, and phosphocellulose. The procedure may be completed in 2.5 days and the resultant enzyme is judged to be greater than 90% pure. 相似文献
10.
11.
12.
Molecular evolution of the RNA polymerase II CTD 总被引:1,自引:0,他引:1
13.
14.
15.
16.
17.
18.
19.
Sareen A Choudhry P Mehta S Sharma N 《Biochemical and biophysical research communications》2005,332(3):763-770
Rpb4 and Rpb7, the fourth and the seventh largest subunits of RNA polymerase II, form a heterodimer in Saccharomyces cerevisiae. To identify the site of interaction between these subunits, we constructed truncation mutants of both these proteins and carried out yeast two hybrid analysis. Deletions in the amino and carboxyl terminal domains of Rpb7 abolished its interaction with Rpb4. In comparison, deletion of up to 49 N-terminal amino acids of Rpb4 reduced its interaction with Rpb7. Complete abolishment of interaction between Rpb4 and Rpb7 occurred by truncation of 1-106, 1-142, 108-221, 172-221 or 198-221 amino acids of Rpb4. Use of the yeast two-hybrid analysis in conjunction with computational analysis of the recently reported crystal structure of Rpb4/Rpb7 sub-complex allowed us to identify regions previously not suspected to be involved in the functional interaction of these proteins. Taken together, our results have identified the regions that are involved in interaction between the Rpb4 and Rpb7 subunits of S. cerevisiae RNA polymerase II in vivo. 相似文献
20.
Sampath V Balakrishnan B Verma-Gaur J Onesti S Sadhale PP 《The Journal of biological chemistry》2008,283(7):3923-3931
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4.Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase. 相似文献