首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10-11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive epizootiologic models of disease risks.  相似文献   

2.
Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.  相似文献   

3.
Deer mice (Peromyscus maniculatus) were inoculated with a sublethal dose of a field strain of Modoc virus to determine patterns of viral persistence, shedding, and transmission. Blood, serum, urine, fecal, and oral swab samples were collected at selected intervals until 63 days postinoculation (PI) after which lung, liver, spleen, kidney, and salivary glands were explanted. Viral assays were conducted by intracranial inoculations of suckling mice and antibody titers were determined by the micro-complement-fixation test. Viremias lasted for up to 4 days PI. Antibody titers were present by day 8 PI, peaked at day 13-20 PI, and persisted until day 63 PI. There was no evidence of viral shedding in urine, fecal, or oral swab samples. Virus was detected in explanted lungs only. In a separate experiment, deer mice were inoculated with virus and lungs were removed from five mice per wk for 10 wk. Indirect fluorescent antibody (IFA) techniques were used to determine the location of virus in lung tissue and to examine fixed tissue for lesions. IFA showed virus in lung parenchymal cells beginning 42 days PI and persisting at least 70 days PI. No histopathologic changes were seen. Horizontal transmission of the virus was studied by placing uninoculated mice with inoculated mice for 42 days and determining if the test animals developed antibodies or had virus in their lungs. Fifty-percent of the uninoculated mice developed antibody. One of these animals had virus in its lungs. Therefore, Modoc virus may be transmitted by direct contact.  相似文献   

4.
Respiratory symptoms with rotavirus shedding in nasopharyngeal secretions have been reported in children with and without gastrointestinal symptoms (Zheng et al., 1991, J. Med. Virol. 34:29-37). To investigate if attenuated and virulent human rotavirus (HRV) strains cause upper respiratory tract infections or viremia in gnotobiotic pigs, we inoculated them with attenuated or virulent HRV intranasally, intravenously, or orally or via feeding tube (gavage) and assayed virus shedding. After oral or intranasal inoculation with attenuated HRV, the pigs remained asymptomatic, but 79 to 95% shed virus nasally and 5 to 17% shed virus rectally. After inoculation by gavage, no pigs shed virus nasally or rectally, but all pigs seroconverted with antibodies to HRV. No viremia was detected through postinoculation day 10. Controls inoculated intranasally with nonreplicating rotavirus-like particles or mock inoculated did not shed virus. In contrast, 100% of pigs inoculated with virulent HRV (oral, intranasal, or gavage) developed diarrhea, shed virus nasally and rectally, and had viremia. The infectivity of sera from the viremic virulent HRV-inoculated pigs was confirmed by inoculating gnotobiotic pigs orally with pooled HRV-positive serum. Serum-inoculated pigs developed diarrhea and fecal and nasal virus shedding and seroconverted with serum and intestinal HRV antibodies. Pigs inoculated intravenously with serum or intestinal contents from the viremic virulent HRV-inoculated pigs developed diarrhea, virus shedding, and viremia, similar to the orally inoculated pigs. This study provides new evidence that virulent HRV causes transient viremia and upper respiratory tract infection in addition to gastrointestinal infection in gnotobiotic pigs, confirming previous reports of rotavirus antigenemia (Blutt et al., Lancet 362:1445-1449, 2003). Our data also suggest that intestinal infection might be initiated from the basolateral side of the epithelial cells via viremia. Additionally, virus shedding patterns indicate a different pathogenesis for attenuated versus virulent HRV.  相似文献   

5.
Previous experimental infection demonstrated that juvenile muskellunge (Esox masquinongy) can survive experimental infection of viral hemorrhagic septicemia virus, Genotype IVb (VHSV IVb) at a low concentration of exposure. Herein we report that survivors of experimental infection with VHSV IVb shed the virus into the surrounding environment for an extended period of time. When muskellunge were exposed to VHSV IVb by immersion at a concentration of 1,400 plaque forming units (PFU)/ml, VHSV IVb was detected in the water of surviving fish for up to 15 weeks postexposure (p.e.) with the highest levels of shedding occurring between weeks 1 and 5 p.e. We estimated that each juvenile muskellunge can shed upwards of 1.36×10(5) PFU/fish/h after initial exposure signifying the uptake and amplification of VHSV to several orders of magnitude above the original exposure concentration. Muskellunge surviving low concentration exposure were re-infected with VHSV IVb by immersion at week 22 p.e. at concentrations ranging from 0 to 10(6) PFU/ml. Viral shedding was detected in all re-exposed fish, including mock rechallenged controls up to 15 consecutive weeks. Rates of viral shedding were substantially higher following rechallenge in the first 5 weeks. The highest rate of viral shedding was approximately 4.6×10(6) PFU/fish/h and shedding did not necessarily correspond to the re-exposure VHSV concentration. The results of this study shed new light into the dynamics of VHSV IVb shedding in a highly susceptible host and provide useful insights to fishery managers to design effective control strategies to this deadly virus.  相似文献   

6.
Achenbach JE  Bowen RA 《PloS one》2011,6(3):e17643
Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus.  相似文献   

7.
We conducted laboratory challenge trials using mallard ducks (Anas platyrhynchos) to compare methods for detecting carriers of Pasteurella multocida, the bacterium that causes avian cholera, in wild birds. Birds that survived the initial infection were euthanized at 2-4 wk intervals up to 14 wk post challenge. Isolates of P. multocida were obtained at necropsy from 23% of the birds that survived initial infection. We found that swab samples (oral, cloacal, nasal, eye, and leg joint) were most effective for detecting carrier birds up to 14 wk post infection. No detectable differences in isolation were observed for samples stored in either 10% dimethysulfoxide or brain heart infusion broth. The frequency of detecting carriers in our challenge trials appeared to be related to mortality rates observed during the trial, but was not related to a number of other factors including time after challenge, time delays in collecting tissues postmortem, and route of infection. In our trials, there was little association between antibody levels and carrier status. We concluded that swabs samples collected from recently dead birds, stored in liquid nitrogen, and processed using selective broth provide a feasible field method for detecting P. multocida carriers in wild waterfowl.  相似文献   

8.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30–40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3–4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.  相似文献   

9.

Background

Cottontails (Sylvilagus spp.) are common mammals throughout much of the U.S. and are often found in peridomestic settings, potentially interacting with livestock and poultry operations. If these animals are susceptible to avian influenza virus (AIV) infections and shed the virus in sufficient quantities they may pose a risk for movement of avian influenza viruses between wildlife and domestic animals in certain situations.

Methodology/Principal Findings

To assess the viral shedding potential of AIV in cottontails, we nasally inoculated fourteen cottontails with a low pathogenic AIV (H4N6). All inoculated cottontails shed relatively large quantities of viral RNA both nasally (≤106.94 PCR EID50 equivalents/mL) and orally (≤105.09 PCR EID50 equivalents/mL). However, oral shedding tended to decline more quickly than did nasal shedding. No animals showed any obvious signs of disease throughout the study. Evidence of a serological response was found in all infected rabbits at 22 days post infection in convalescent sera.

Conclusions/Significance

To our knowledge, cottontails have not been previously assessed for AIV shedding. However, it was obvious that they shed AIV RNA extensively via the nasal and oral routes. This is significant, as cottontails are widely distributed throughout the U.S. and elsewhere. These mammals are often found in highly peridomestic situations, such as farms, parks, and suburban neighborhoods, often becoming habituated to human activities. Thus, if infected these mammals could easily transport AIVs short distances.  相似文献   

10.
Six Cryptosporidium-free Peking ducks (Anas platyrhynchos) were each orally inoculated with 2.0 x 10(6) Cryptosporidium parvum oocysts infectious to neonatal BALB/c mice. Histological examination of the stomachs jejunums, ilea, ceca, cloacae, larynges, tracheae, and lungs of the ducks euthanized on day 7 postinoculation (p.i.) revealed no life-cycle stages of C. parvum. However, inoculum-derived oocysts extracted from duck feces established severe infection in eight neonatal BALB/c mice (inoculum dose, 2.5 x 10(5) per mouse). On the basis of acid-fast stained direct wet smears, 73% of the oocysts in duck feces were intact (27% were oocyst shells), and their morphological features conformed to those of viable and infectious oocysts of the original inoculum. The fluorescence scores of the inoculated oocysts, obtained by use of the MERIFLUOR test, were identical to those obtained for the feces-recovered oocysts (the majority were 3+ to 4+). The dynamics of oocyst shedding showed that the birds released a significantly higher number of intact oocysts than the oocyst shells (P < 0.01). The number of intact oocysts shed (87%) during the first 2 days p.i. was significantly higher than the number shed during the remaining 5 days p.i. (P < 0.01) and significantly decreased from day 1 to day 2 p.i. (P < 0.01). The number of oocyst shells shed during 7 days p.i. did not vary significantly (P > 0.05). The retention of infectivity of C. parvum oocysts after intestinal passage through an aquatic bird has serious epidemiological and epizootiological implications. Waterfowl may serve as mechanical vectors for the waterborne oocysts and may enhance contamination of surface waters with C. parvum. As the concentration of Cryptosporidium oocysts in source waters is attributable to watershed management practices, the watershed protection program should consider waterfowl as a potential factor enhancing contamination of the source water with C. parvum.  相似文献   

11.

Background

Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined.

Methodology/Principal Findings

Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤106.02 PCR EID50 equivalent/mL and ≤105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI.

Conclusions/Significance

These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations.  相似文献   

12.
This study, carried out in three goat herds, was aimed at describing individual responses to Q fever infection in an abortive context, focusing on both antibody and shedding levels. Seroprevalence of Coxiella burnetii (Cb) infection and vaginal shedding of 1083 goats were investigated using ELISA and realtime qPCR assays, respectively. At the end of the outbreaks, a seroprevalence of 45.0% was found, and vaginal shedding appeared massive with levels above 10(4) Cb per swab in 42.3% of the whole population and above 10(6) Cb per swab for 90.9% of aborted goats. Susceptible animals (i.e. seronegative nonshedders) were unfrequent (31.2%), most of them being kids (94.7%). Seronegative females were predominant among nonshedders and conversely seropositive ones, predominant among high shedders (above 10(6) Cb per swab). Nevertheless, at least 43.3% of seronegative goats shed bacteria confirming the need of interpreting serology on a herd scale. The subsequent farrowing period was characterized by a significant reduction in the number of clinical cases. Females that had already aborted were more often involved than others. Shedding quantities remained high, particularly for primiparous does, mainly when facing infection for the first time. Thus, Q fever control must be based on both preventive measures directed to the preherd and environmental precautions.  相似文献   

13.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

14.
The role of foot-and-mouth disease virus (FMDV) carrier cattle in causing new outbreaks is still a matter of debate and it is important to find out these carrier animals by post-outbreak serosurveillance to declare freedom from FMDV infection. In this study we explore the differences in viral shedding between carrier and non-carrier animals, quantify the transmission rate of FMDV infection from carriers to susceptible animals and identify potential viral determinants of viral persistence. We collected nasal and saliva samples from 32 vaccinated and 7 unvaccinated FMDV carrier cattle and 48 vaccinated and 13 unvaccinated non-carrier cattle (total n=100) during the acute phase of infection (up to 28 days post-challenge) and then from limited number of animals up to a maximum 168 days post-challenge. We demonstrate that unvaccinated cattle excrete significantly higher levels of virus for longer periods compared with vaccinated cattle and this is independent of whether or not they subsequently become carriers. By introducing naïve cattle in to the FMDV carrier population we show the risk of new outbreaks is clearly very low in controlled conditions, although there could still be a potential threat of these carrier animals causing new outbreaks in the field situation. Finally, we compared the complete genome sequences of viruses from carrier cattle with the challenge virus and found no evidence for viral determinants of the carrier state.  相似文献   

15.
Four-week-old rats (WKA/Hkm strain) were infected intranasally with the Ann Arbor/1/50 strain of influenza C virus and examined for clinical symptoms, virus replication, and serum antibody response. Although the animals showed no definite signs of illness, the virus replicated in the nose, and the hemagglutination-inhibiting (HI) and neutralizing antibodies were produced in their sera. When the inoculum sizes of 106.2 and 103.2 PFU were used, virus was recovered from nasal homogenates between days 1 and 10, and serum HI antibody became detectable by 10 days after infection. The rats infected with 101.2 PFU of the virus continued to shed virus until as late as day 20 without producing serum HI antibody. The amount of virus recovered from the nose was not affected significantly by either sex. age, or strain of the rat except that a slower virus growth was seen in the LE strain. It was also observed that the rats, previously inoculated with 103.2 PFU of the virus, showed no virus shedding when reinfected 7 weeks later but produced virus though in low titers when reinfected 50 to 55 weeks later. Virus was also recovered from rats once inoculated with 101.2 PFU of the virus when challenged 7 weeks later. Thus repeated infections characteristic of human influenza C can be produced in rats under the restricted conditions.  相似文献   

16.
Entecavir (ETV), a potent inhibitor of the hepadnaviral polymerases, prevented the development of persistent infection when administered in the early stages of duck hepatitis B virus (DHBV) infection. In a preliminary experiment, ETV treatment commenced 24 h before infection showed no significant advantage over simultaneous ETV treatment and infection. In two further experiments 14-day-old ducks were inoculated with DHBV-positive serum containing 10(4), 10(6), 10(8), or 5 x 10(8) viral genomes (vge) and were treated orally with 1.0 mg/kg of body weight/day of ETV for 14 or 49 days. A relationship between virus dose and infection outcome was seen: non-ETV-treated ducks inoculated with 10(4) vge had transient infection, while ducks inoculated with higher doses developed persistent infection. ETV treatment for 49 days did not prevent initial infection of the liver but restricted the spread of infection more than approximately 1,000-fold, a difference which persisted throughout treatment and for up to 49 days after withdrawal. Ultimately, three of seven ETV-treated ducks resolved their DHBV infection, while the remaining ducks developed viremia and persistent infection after a lag period of at least 63 days. ETV treatment for 14 days also restricted the spread of infection, leading to marked and sustained reductions in the number of DHBV-positive hepatocytes in 7 out of 10 ducks. In conclusion, short-term suppression with ETV provides opportunity for the immune response to successfully control DHBV infection. Since DHBV infection of ducks provides a good model system for HBV infection in humans, it seems likely that ETV may be useful in postexposure therapy for HBV infection aimed at preventing the development of persistent infection.  相似文献   

17.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

18.
Several transmembrane molecules are cleaved at juxtamembrane extracellular sites leading to shedding of ectodomains. We analysed shedding of members of the Vps10p-D (Vps10p domain; where Vps is vacuolar protein sorting) family of neuronal type-I receptors with partially overlapping functions, and additional proteolytic events initiated by the shedding. When transfected into CHO (Chinese-hamster ovary) cells (CHO-K1), sorCS1a-sorCS1c isoforms were shed at high rates (approximately 0.61% x min(-1)) that were increased approx. 3-fold upon stimulation with phorbol ester. sorCS1c identified in the cultured neuroblastoma cell line SH-SY5Y was shed similarly. In CHO-K1 transfectants, constitutive and stimulated shedding of sorCS3 also occurred at high rates (0.29% and 1.03% x min(-1)). By comparison, constitutive and stimulated shedding of sorLA occurred at somewhat lower rates (0.07% and 0.48% x min(-1)), whereas sorCS2 and sortilin were shed at very low rates even when stimulated (approximately 0.01% x min(-1)). Except for sorCS2, shedding of the receptors was dramatically reduced in mutant CHO cells (CHO-M2) devoid of active TACE (tumour necrosis factor alpha-converting enzyme), demonstrating that this enzyme accounts for most sheddase activity. The release of sorCS1 and sorLA ectodomains initiated rapid cleavage of the membrane-tethered C-terminal stubs that accumulated only in the presence of gamma-secretase inhibitors. Purified shed sorLA bound several ligands similarly to the entire luminal domain of the receptor, including PDGF-BB (platelet-derived growth factor-BB) and amyloid-beta precursor protein. In addition, PDGF-BB also bound to the luminal domains of sorCS1 and sorCS3. The results suggest that ectodomains shed from a subset of Vps10p-D receptors can function as carrier proteins.  相似文献   

19.
We previously demonstrated the susceptibility of pheasants to infection with influenza A viruses of 15 hemagglutinin (HA) subtypes: 13/23 viruses tested were isolated for >or=14 days, all in the presence of serum-neutralizing antibodies; one virus (H10) was shed for 45 days postinfection. Here we confirmed that 20% of pheasants shed low-pathogenic influenza viruses for prolonged periods. We aimed to determine why the antibody response did not clear the virus in the usual 3 to 10 days, because pheasants serve as a long-term source of influenza viruses in poultry markets. We found evidence of virus replication and histological changes in the large intestine, bursa of Fabricius, and cecal tonsil. The virus isolated 41 days postinfection was antigenically distinct from the parental H10 virus, with corresponding changes in the HA and neuraminidase. Ten amino acid differences were found between the parental H10 and the pheasant H10 virus; four were in potential antigenic sites of the HA molecule. Prolonged shedding of virus by pheasants results from a complex interplay between the diversity of virus variants and the host response. It is often argued that vaccination pressure is a mechanism that contributes to the generation of antigenic-drift variants in poultry. This study provided evidence that drift variants can occur naturally in pheasants after prolonged shedding of virus, thus strengthening our argument for the removal of pheasants from live-bird retail markets.  相似文献   

20.
We examined the long-term effect of in utero exposure to streptozotocin-induced maternal diabetes on the progeny that postnatally received either ad libitum access to milk by being fed by control mothers (CM/DP) or were subjected to relative nutrient restriction by being fed by diabetic mothers (DM/DP) compared with the control progeny fed by control mothers (CM/CP). There was increased food intake, glucose intolerance, and obesity in the CM/DP group and diminished food intake, glucose tolerance, and postnatal growth restriction in the DM/DP group, persisting in the adult. These changes were associated with aberrations in hormonal and metabolic profiles and alterations in hypothalamic neuropeptide Y concentrations. By use of subfractionation and Western blot analysis techniques, the CM/DP group demonstrated a higher skeletal muscle sarcolemma-associated (days 1 and 60) and white adipose tissue plasma membrane-associated (day 60) GLUT4 in the basal state with a lack of insulin-induced translocation. The DM/DP group demonstrated a partial amelioration of this change observed in the CM/DP group. We conclude that the offspring of a diabetic mother with ad libitum postnatal nutrition demonstrates increased food intake and resistance to insulin-induced translocation of GLUT4 in skeletal muscle and white adipose tissue. This in turn leads to glucose intolerance and obesity at a later stage (day 180). Postnatal nutrient restriction results in reversal of this adult phenotype, thereby explaining the phenotypic heterogeneity that exists in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号