首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing interest in the role of the brain angiotensin AT4 receptor subtype in cognitive processing. This receptor subtype is activated by angiotensin IV (AngIV), is heavily distributed in the mammalian hippocampus, neocortex, and cerebellum, and has been linked with a learning and memory function. The present investigation utilized intracerebroventricular (i.c.v.)-infused scopolamine hydrobromide (scop), a muscarinic receptor antagonist, to disrupt acquisition of the circular water maze task of spatial memory. All animals received 2 days of training trials (five trials/day) using a visible platform in an effort to preclude subsequent confounding by scopolamine-induced sensory and/or motor impairments. In the first experiment, i.c.v.-infused scopolamine (70 nmol) was followed by 0, 10, 100, or 1000 pmol i.c.v. doses of Nle(1)-AngIV in separate groups of rats. Results indicated that each dose of Nle(1)-AngIV improved the poor acquisition of this task induced by scopolamine treatment. However, the 100- and 1000-pmol doses were most effective with respect to latency and distance to find the submerged pedestal. A second experiment demonstrated that treatment with a specific AT4 receptor antagonist, Nle(1), Leual(3)-AngIV (1000 pmol), blocked the ability of Nle(1)-AngIV (100 pmol) to improve the performance of scopolamine-compromised rats. These results support the notion that hippocampal AT4 receptors are involved in spatial memory processing, and that activation of these binding sites can overcome the disruption of spatial memory accompanying treatment with a muscarinic receptor antagonist.  相似文献   

2.
The brain angiotensin AT4 receptor subtype has been implicated in cognitive processing. We initially established that intracerebroventricular administration of the nAChR-antagonist mecamylamine (mec) interfered with spatial memory performance in male Sprague-Dawley rats. Next we demonstrated that mec-induced deficits in spatial memory were overcome by the AT4 receptor-agonist Norleucine1-Angiotensin IV (Nle1-Ang IV). Nle1-Ang IV could not, however, compensate for spatial learning impairments precipitated by both mec and the mAChR-antagonist scopolamine. These findings support the importance of the AT4 receptor in cognitive processing and suggest that the ability of Nle1-Ang IV to improve spatial memory deficiencies may be dependant upon the brain cholinergic system.  相似文献   

3.
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.  相似文献   

4.
G protein-coupled receptors are thought to isomerize between distinct inactive and active conformations, an idea supported by receptor mutations that induce constitutive (agonist-independent) activation. The agonist-promoted active state initiates signaling and, presumably, is then phosphorylated and internalized to terminate the signal. In this study, we examined the phosphorylation and internalization of wild type and constitutively active mutants (N111A and N111G) of the type 1 (AT(1A)) angiotensin II receptor. Cells expressing these receptors were stimulated with angiotensin II (AngII) and [Sar(1),Ile(4),Ile(8)]AngII, an analog that only activates signaling through the constitutive receptors. Wild type AT(1A) receptors displayed a basal level of phosphorylation, which was stimulated by AngII. Unexpectedly, the constitutively active AT(1A) receptors did not exhibit an increase in basal phosphorylation nor was phosphorylation enhanced by AngII stimulation. Phosphorylation of the constitutively active receptors was unaffected by pretreatment with the non-peptide AT(1) receptor inverse agonist, EXP3174, and was not stimulated by the selective ligand, [Sar(1),Ile(4),Ile(8)]AngII. Paradoxically, [Sar(1),Ile(4), Ile(8)]AngII produced a robust ( approximately 85% of AngII), dose-dependent phosphorylation of the wild type AT(1A) receptor at sites in the carboxyl terminus similar to those phosphorylated by AngII. Moreover, internalization of both wild type and constitutive receptors was induced by AngII, but not [Sar(1),Ile(4),Ile(8)]AngII, providing a differentiation between the phosphorylated and internalized states. These data suggest that the AT(1A) receptor can attain a conformation for phosphorylation without going through the conformation required for inositol phosphate signaling and provide evidence for a transition of the receptor through multiple states, each associated with separate stages of receptor activation and regulation. Separate transition states may be a common paradigm for G protein-coupled receptors.  相似文献   

5.
The angiotensin II peptide analog [Sar(1),Ile(4),Ile(8)]AngII (SII) is a biased AT(1A) receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT(1A) receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT(1A) receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E(2) synthesis. These findings suggest that AT(1A) receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.  相似文献   

6.
Clinical and experimental studies show that angiotensin II (AngII) promotes vascular pathology via activation of AngII type 1 receptors (AT1Rs). We recently reported that NP‐6A4, a selective peptide agonist for AngII type 2 receptor (AT2R), exerts protective effects on human vascular cells subjected to serum starvation or doxorubicin exposure. In this study, we investigated whether NP‐6A4–induced AT2R activation could mitigate AngII‐induced abdominal aortic aneurism (AAA) using AngII‐treated Apoe?/? mice. Male Apoe?/? mice were infused with AngII (1 µg/kg/min) by implanting osmotic pumps subcutaneously for 28 days. A subset of mice was pre‐treated subcutaneously with NP‐6A4 (2.5 mg/kg/day) or vehicle for 14 days prior to AngII, and treatments were continued for 28 days. NP‐6A4 significantly reduced aortic stiffness of the abdominal aorta induced by AngII as determined by ultrasound functional analyses and histochemical analyses. NP‐6A4 also increased nitric oxide bioavailability in aortic tissues and suppressed AngII‐induced increases in monocyte chemotactic protein‐1, osteopontin and proteolytic activity of the aorta. However, NP‐6A4 did not affect maximal intraluminal aortic diameter or AAA incidences significantly. These data suggest that the effects of AT2R agonist on vascular pathologies are selective, affecting the aortic stiffness and proteolytic activity without affecting the size of AAA.  相似文献   

7.
8.
Recent studies show that angiotensin II (AngII) can act from within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane AngII receptors. The role of this intracellular AngII (AngIIi) is unclear. Besides direct effects of AngIIi on cellular processes one could hypothesise a possible role of AngIIi in modulation of cellular responses induced after heterologous receptor stimulation. We therefore examined if AngIIi influences [Ca+]i in A7r5 smooth muscle cells after serotonin (5HT) or UTP receptor stimulation. Application of AngIIi using liposomes, markedly inhibited 45Ca2+ influx after receptor stimulation with 5HT or UTP. This inhibition was reversible by intracellular administration of the AT1-antagonist losartan and not influenced by the AT2-antagonist PD123319. Similar results were obtained in single cell [Ca2+]i measurements, showing that AngIIi predominantly influences Ca2+ influx and not Ca2+ release via AT1-like receptors. It is concluded that AngIIi modulates signal transduction activated by heterologous receptor stimulation.  相似文献   

9.
Muscarinic receptor activation facilitates the induction of synaptic plasticity and enhances cognitive function. However, the specific muscarinic receptor subtype involved and the critical intracellular signaling pathways engaged have remained controversial. Here, we show that the recently discovered highly selective allosteric M(1) receptor agonist 77-LH-28-1 facilitates long-term potentiation (LTP) induced by theta burst stimulation at Schaffer collateral synapses in the hippocampus. Similarly, release of acetylcholine by stimulation of cholinergic fibers facilitates LTP via activation of M(1) receptors. N-methyl-D-aspartate receptor (NMDAR) opening during theta burst stimulation was enhanced by M(1) receptor activation, indicating this is the mechanism for LTP facilitation. M(1) receptors were found to enhance NMDAR activation by inhibiting SK channels that otherwise act to hyperpolarize postsynaptic spines and inhibit NMDAR opening. Thus, we describe a mechanism where M(1) receptor activation inhibits SK channels, allowing enhanced NMDAR activity and leading to a facilitation of LTP induction in the hippocampus.  相似文献   

10.
Abstract

This study demonstrates the existence of a high affinity binding site on rabbit cardiac fibroblasts of the hexapeptide (3-8) fragment of angiotensin II (AngIV). [125I]-AngIV binding is saturable, reversible and distinct from angiotensin II (AngII) receptors. At 37°C equilibrium of [125I]-AngIV binding is reached within 2 h. AngIV displaces [125I]-AngIV bound to cultured rabbit cardiac fibroblasts whereas AngII receptor-specific ligands ([Sar1,IIe8]-AngII, Dup753, CGP42112A) do not. Scatchard plot analysis revealed that [125I]-AngIV binds to a single class of sites with Kd = 4.87 ± 0.11 × 10?9 mol/l, Bmax = 371 ± 8.3 fmol/mg protein and a Hill coefficient of 0.92. In the presence of the non-hydrolyzable GTP analog GTPγS [125I]-AngIV binding in rabbit cardiac fibroblasts was not markedly affected, whereas binding of [125I]-(Sar1,IIe8)-AngII is reduced. The role of AngIV in the heart and in particular in cardiac fibroblasts is unknown, and the putative interaction of AngIV with AngII needs further characterization.  相似文献   

11.
The topology of the second extracellular loop (ECL2) and its interaction with ligands is unique in each G protein-coupled receptor. When the orthosteric ligand pocket located in the transmembrane (TM) domain is occupied, ligand-specific conformational changes occur in the ECL2. In more than 90% of G protein-coupled receptors, ECL2 is tethered to the third TM helix via a disulfide bond. Therefore, understanding the extent to which the TM domain and ECL2 conformations are coupled is useful. To investigate this, we examined conformational changes in ECL2 of the angiotensin II type 1 receptor (AT1R) by introducing mutations in distant sites that alter the activation state equilibrium of the AT1R. Differential accessibility of reporter cysteines introduced at four conformation-sensitive sites in ECL2 of these mutants was measured. Binding of the agonist angiotensin II (AngII) and inverse agonist losartan in wild-type AT1R changed the accessibility of reporter cysteines, and the pattern was consistent with ligand-specific “lid” conformations of ECL2. Without agonist stimulation, the ECL2 in the gain of function mutant N111G assumed a lid conformation similar to AngII-bound wild-type AT1R. In the presence of inverse agonists, the conformation of ECL2 in the N111G mutant was similar to the inactive state of wild-type AT1R. In contrast, AngII did not induce a lid conformation in ECL2 in the loss of function D281A mutant, which is consistent with the reduced AngII binding affinity in this mutant. However, a lid conformation was induced by [Sar1,Gln2,Ile8] AngII, a specific analog that binds to the D281A mutant with better affinity than AngII. These results provide evidence for the emerging paradigm of domain coupling facilitated by long range interactions at distant sites on the same receptor.  相似文献   

12.
ABSTRACT: BACKGROUND: Fragile X syndrome (FXS) is caused by the absence of the mRNA-binding protein Fragile X mental retardation protein (FMRP), encoded by the Fmr1 gene. Overactive signaling by group 1 metabotropic glutamate receptor (Grp1 mGluR) could contribute to slowed synaptic development and other symptoms of FXS. Our previous study has identified that facilitation of synaptic long-term potentiation (LTP) by D1 receptor is impaired in Fmr1 knockout (KO) mice. However, the contribution of Grp1 mGluR to the facilitation of synaptic plasticity by D1 receptor stimulation in the prefrontal cortex has been less extensively studied. RESULTS: Here we demonstrated that DL-AP3, a Grp1 mGluR antagonist, rescued LTP facilitation by D1 receptor agonist SKF81297 in Fmr1KO mice. Grp1 mGluR inhibition restored the GluR1-subtype AMPA receptors surface insertion by D1 activation in the cultured Fmr1KO neurons. Simultaneous treatment of Grp1 mGluR antagonist with D1 agonist recovered the D1 receptor signaling by reversing the subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in the Fmr1KO neurons. Treatment of SKF81297 alone failed to increase the phosphorylation of NR2B-containing N-methyl D-aspartate receptors (NMDARs) at Tyr-1472 (p-NR2B-Tyr1472) in the cultures from KO mice. However, simultaneous treatment of DL-AP3 could rescue the level of p-NR2B-Tyr1472 by SKF81297 in the cultures from KO mice. Furthermore, behavioral tests indicated that simultaneous treatment of Grp1 mGluR antagonist with D1 agonist inhibited hyperactivity and improved the learning ability in the Fmr1KO mice. CONCLUSION: The findings demonstrate that mGluR1 inhibition is a useful strategy to recover D1 receptor signaling in the Fmr1KO mice, and combination of Grp1 mGluR antagonist and D1 agonist is a potential drug therapy for the FXS.  相似文献   

13.
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.  相似文献   

14.
Angiotensin IV enhances LTP in rat dentate gyrus in vivo   总被引:6,自引:0,他引:6  
Angiotensins have been shown to play a significant role in a variety of physiological functions including learning and memory processes. Relatively recent evidence supports the increasing importance of angiotensin IV (Ang IV), in many of these functions previously associated only with Ang II, including learning and memory. An interesting hypothesis generated by these results has been that Ang II is a precursor for the production of a more active peptide fragment, Ang IV. Since Ang II impairs learning and memory, when administered directly or released into the hippocampal dentate gyrus, and inhibits long term potentiation (LTP) in medial perforant path-dentate granule cell synapses, as well; it remained to be seen what effects Ang IV had on LTP in these same synapses. Results of this study show clearly that Ang IV significantly enhances LTP, and the enhancement is both dose and time dependent. The following solutions of Ang IV were administered over a five min period, at the end of baseline and before the first tetanus was applied: 2.39, 4.78, and 9.56 nM. An inverted U-type dose related effect was observed. A complex time related effect was observed with a maximum at 5 min, a return to normal LTP at 30 min and a minimum below normal at 90 min, and a return to normal LTP at 120 min. The effects of the 4.78 nM solution were determined at the following intervals between administration and the first tetanus: 5, 15, 30, 60, 90, and 120 min. The enhancement of LTP can be prevented by pretreatment with Divalinal, an Ang IV antagonist, without any effect on normal LTP. Two solutions of Divalinal were used; 5 nM and 5 microM, and the 5 microM was more effective and completely blocked the enhancement of normal LTP. Results were also obtained with 4.78 nM Nle1-Ang IV (Norleucine), an Ang IV agonist. Norleucine was less effective than Ang IV in the enhancement of normal LTP and displayed a similar time course of activity. Both Ang IV and Norleucine produced a significant suppression of normal LTP at 90 min; that remains to be explained. However, the inhibition by Ang IV was dose dependent and was blocked by Divalinal. The fact that the Ang IV enhancement of normal LTP was blocked by losartan, an Ang II AT1 receptor antagonist, is puzzling since Divalinal had no effect on the inhibition of LTP by Ang II.  相似文献   

15.
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.  相似文献   

16.
Initiation and termination of signaling of the type I angiotensin receptor (AT(1)-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT(1)-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT(1)-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT(1)-R upon AngII stimulus with those of [Sar(1),Ile(8)]AngII or [Sar(1),Ile(4),Ile(8)]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT(1)-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments.  相似文献   

17.
The aim of the present study was to analyse modulations of adrenal catecholamine secretion from the adrenal gland of anesthetized dogs in response to locally administered angiotensin II (AngII) in the presence of either PD 123319 or CGP 42112, both of which are highly specific and selective ligands to angiotensin AT2 receptor. Plasma concentrations of epinephrine and norepinephrine in adrenal venous and aortic blood were quantified by a high performance liquid chromatography coupled with electrochemical detection (HPLC-EC) method. Adrenal venous blood flow was measured by gravimetry. Local administration of AngII (0.05 microg, 0.1 microM) to the left adrenal gland increased adrenal gland catecholamine output more than 30 times that found in nonstimulated states. Administration of either PD 123319 (0.085 microg (0.23 microM) to 8.5 microg (23 microM)) or CGP 42112 (0.005 microg (0.01 microM) to 5 microg (10 microM)) did not affect the basal catecholamine output significantly. The increase in adrenal catecholamine output in response to AngII was inhibited by approximately 80% following the largest dose of PD 123319. CGP 42112 significantly attenuated the catecholamine response to AngII by approximately 70%. PD 123319 and CGP 42112 were devoid of any agonist actions with respect to catecholamine output by the adrenal gland in vivo. Furthermore, both PD 123319 and CGP 42112 inhibited the increase in adrenal catecholamine secretion induced by local administration of AngII. The present study suggests that AT2 receptors play a role in mediating catecholamine secretion by the adrenal medulla in response to AngII receptor agonist administration in vivo.  相似文献   

18.
We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.  相似文献   

19.
Angiotensin II (AngII) elicited a rapid and dose-related production of intracellular cyclic GMP (cGMP) in murine neuroblastoma N1E-115 cells. The agonist-induced rise in cGMP levels was blocked in a monophasic fashion by the AT1-selective antagonist DuP 753 or the nonselective antagonist [Sarc1,Ile8]-AngII, and both antagonists produced complete inhibition of the cGMP response elicited by submaximal concentrations of AngII. In contrast, the AT2-selective antagonist CGP 42112A inhibited the cGMP response biphasically. At lower antagonist concentrations, agonist-induced cGMP production was only partially inhibited, whereas complete inhibition was observed only when the concentration of CGP 42112A was increased sufficiently to interact with both AT1 and AT2 receptor subtypes. AngII also increased inositol trisphosphate (InsP3) levels in N1E-115 cells. However, the InsP3 response was mediated exclusively by the AT1 receptor subtype because it was inhibited by lower, AT1-selective concentrations of DuP 753, whereas only higher, nonselective concentrations of CGP 42112A were effective. Finally, the stimulatory effects of AngII on cGMP production appeared to be mediated by the intracellular formation of nitric oxide in that they were attenuated by the nitric oxide synthase inhibitor, N-monomethyl-L-arginine. Collectively, these results suggest that the AngII-elicited rise in cGMP levels may require an interaction between AT1-mediated mobilization of intracellular Ca2+, as well as some partial role of AT2 receptors.  相似文献   

20.
Homology modeling of the structure of the AT1 receptor, based on the high resolution rhodopsin crystal structure, indicated that it is unlikely that the binding of AngII to AT1 involves simultaneously all the receptor's residues reported in the literature to participate in this process. Site-directed mutagenesis using Ala substitution of charged residues Lys20, Arg23, Glu91 and Arg93 was performed to evaluate the participation of their side-chains in ligand binding and in triggering the cell's response. A comparative analysis by competition binding and functional assays using angiotensin II and the analog [Sar1]-angiotensin II suggests an important role for Arg23 of AT1 receptor in binding of the natural agonist. It is discussed whether some receptor's residues participate directly in the binding with AngII or whether they are part of a regulatory site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号