首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine ?-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.  相似文献   

2.
Clogging of the glomerular basement membrane   总被引:6,自引:1,他引:5       下载免费PDF全文
The negative charges of the sulfated glycosaminoglycans (GAGs) of the glomerular basement membrane (GBM) were differentially neutralized by perfusin with high molarity buffers in order to determine whether or not these charges protect the GBM from being clogged by circulating plasma macromolecules. Progressive elimination of the negative charges resulted in clogging of the GBM by perfused native ferritin (NF) and bovine serum albumin as evidenced ultrastructurally by the increase in accumulation of NF in the GBM. In addition, the permeability of the GBM to 125I-insulin, a macromolecule which is normally freely permeable, and the glomerular filtration rate (as determined by [3H]inulin clearance) were markedly reduced after the GBM had been clogged with NF in the presence of high molarity buffer, thereby indicating that clogging severely reduces the ability of the GMB to act as a selective filter. These findings are consistent with the idea that the sulfated GAGs of the GBM serve as anticlogging agents.  相似文献   

3.
The kidney's glomerular filtration barrier consists of two cells-podocytes and endothelial cells-and the glomerular basement membrane (GBM), a specialized extracellular matrix that lies between them. Like all basement membranes, the GBM consists mainly of laminin, type IV collagen, nidogen, and heparan sulfate proteoglycan. However, the GBM is unusually thick and contains particular members of these general protein families, including laminin-521, collagen α3α4α5(IV), and agrin. Knockout studies in mice and genetic findings in humans show that the laminin and type IV collagen components are particularly important for GBM structure and function, as laminin or collagen IV gene mutations cause filtration defects and renal disease of varying severities, depending on the nature of the mutations. These studies suggest that the GBM plays a crucial role in establishing and maintaining the glomerular filtration barrier.  相似文献   

4.
5.
The synthesis of glomerular basement membrane (GBM) total protein and collagen was assessed by two methods in vivo in normal and streptozotocin diabetic rats 4-6 weeks and 42-44 weeks after onset of hyperglycaemia, using L-[2, 3, 3H] proline as a radioactive precursor. The incorporation of tritiated proline into GBM hydroxyproline was used as a measure of collagen synthesis and that into proline as total protein synthesis. The basement membrane fractions from both short- and long-term diabetic rats attained much higher proline and hydroxyproline specific activities compared to normal GBM proline and hydroxyproline specific activities. Early insulin therapy with normalization of blood sugar levels in short-term (4-6 weeks) diabetic rats returned the abnormal increases in GBM total protein and collagen synthesis to normal. By contrast, poor glycaemic control with insulin did not prevent the increases in GBM protein synthesis. The results of the present study suggest that overall enhancement of GBM protein synthesis occurs in both short- and long-term streptozotocin diabetes. Early insulin therapy with normalization of blood sugar levels prevents this increase in GBM protein synthesis. Poor glycaemic control had no effect on abnormal GBM protein synthesis. This may be of potential significance in view of preventing chronic diabetic microvascular complications such as nephropathy.  相似文献   

6.
Miner JH 《Organogenesis》2011,7(2):75-82
The glomerular basement membrane (GBM) is a crucial component of the kidney's filtration barrier that separates the vasculature from the urinary space. During glomerulogenesis, the GBM is formed from fusion of two distinct basement membranes, one synthesized by the glomerular epithelial cell (podocyte) and the other by the glomerular endothelial cell. The main components of the GBM are laminin-521 (α5β2γ1), collagen α3α4α5(IV), nidogen and the heparan sulfate proteoglycan, agrin. By studying mice lacking specific GBM components, we have shown that during glomerulogenesis, laminin is the only one that is required for GBM integrity and in turn, the GBM is required for completion of glomerulogenesis and glomerular vascularization. In addition, our results from laminin β2-null mice suggest that laminin-521, and thus the GBM, contribute to the establishment and maintenance of the glomerular filtration barrier to plasma albumin. In contrast, mutations that affect GBM collagen IV or agrin do not impair glomerular development or cause immediate leakage of plasma proteins. However, collagen IV mutation, which causes Alport syndrome and ESRD in humans, leads to gradual damage to the GBM that eventually leads to albuminuria and renal failure. These results highlight the importance of the GBM for establishing and maintaining a perfectly functioning, highly selective glomerular filter.  相似文献   

7.
Protein A-gold immunocytochemistry was applied in combination with morphometrical approaches to reveal the alpha 1(IV), alpha 2(IV), and alpha 3(IV) chains of type IV collagen as well as entactin on renal basement membranes, particularly on the glomerular one, during maturation. The results have indicated that a heterogeneity between renal basement membranes appears during the maturation process. In the glomerulus at the capillary loop stage, both the epithelial and endothelial cell basement membranes were labeled for the alpha 1(IV) and alpha 2(IV) chains of type IV collagen and entactin. After fusion, both proteins were present on the entire thickness of the typical glomerular basement membrane. At later stages, the labeling for alpha 1(IV) and alpha 2(IV) chains of type IV collagen decreased and drifted towards the endothelial side, whereas the labeling for the alpha 3(IV) chain increased and remained centrally located. Entactin remained on the entire thickness of the basement membrane during maturation and in adult stage. The distribution of endogenous serum albumin in the glomerular wall was studied during maturation, as a reference for the functional properties of the glomerular basement membrane. This distribution, dispersed through the entire thickness of the basement membrane at early stages, shifted towards the endothelial side of the lamina densa with maturation, demonstrating a progressive acquisition of the permselectivity. These results demonstrate that modifications in the content and organization of the different constituents of basement membranes occur with maturation and are required for the establishment of the filtration properties of the glomerular basement membrane.  相似文献   

8.
A model is developed and analyzed for type IV collagen turnover in the kidney glomerular basement membrane (GBM), which is the primary structural element in the glomerular capillary wall. The model incorporates strain dependence in both deposition and removal of the GBM, leading to an equilibrium tissue strain at which deposition and removal are balanced. The GBM thickening decreases tissue strain per unit of transcapillary pressure drop according to the law of Laplace, but increases the transcapillary pressure drop required to maintain glomerular filtration. The model results are in agreement with the observed GBM alterations in Alport syndrome and thin basement membrane disease, and the model-predicted linear relation between the inverse capillary radius and inverse capillary thickness at equilibrium is consistent with published data on different mammals. In addition, the model predicts a minimum achievable strain in the GBM based on the geometry, properties, and mechanical environment; that is, an infinitely thick GBM would still experience a finite strain. Although the model assumptions would be invalid for an extremely thick GBM, the minimum achievable strain could be significant in diseases, such as Alport syndrome, characterized by focal GBM thickening. Finally, an examination of reasonable values for the model parameters suggests that the oncotic pressure drop-the osmotic pressure difference between the plasma and the filtrate due to large molecules-plays an important role in setting the GBM strain and, thus, leakage of protein into the urine may be protective against some GBM damage.  相似文献   

9.
Heparan sulfate proteoglycan (HSPG) was extracted from human tubular basement membrane (TBM) with guanidine and purified by ion-exchange chromatography and gel filtration. The glycoconjugate was sensitive to heparitinase and resistant to chondroitinase ABC, had an apparent molecular mass of 200-400 kDa and consisted of 70% protein and 30% glycosaminoglycan. The amino acid composition was characterized by its high content of glycine, proline, alanine and glutamic acid. Hydrolysis with trifluoromethanesulfonic acid yielded core proteins of 160 and 110 kDa. The heparan sulfate (HS) chains obtained after alkaline NaBH4 treatment had a molecular mass of about 18 kDa. Results of heparitinase digestion and HNO2 treatment suggest a clustering of sulfate groups in the distal portion of the HS side chains. These chemical data are comparable to those obtained previously on glomerular basement membrane (GBM) HSPG (Van den Heuvel et al. (1989) Biochem. J. 264, 457-465). Peptide patterns obtained after trypsin, clostripain or V8 protease digestion of TBM and GBM HSPG preparations showed a large similarity. Polyclonal antisera and a panel of monoclonal antibodies raised against both HSPG preparations and directed against the core protein showed complete cross-reactivity in ELISA and on Western blots. They stained all basement membranes in an intense linear fashion in indirect immunofluorescence studies on human kidneys. Based on these biochemical and immunological data we conclude that HSPGs from human GBM and TBM are identical, or at least very closely related, proteins.  相似文献   

10.
The capacity of isolated human glomerular basement membrane (GBM) to initiate surface activation of the human alternative complement pathway was defined by the deposition of C3b under circumstances in which the classical complement pathway was inoperative. The deposition of C3b from normal or C2-deficient serum was time- and magnesium-dependent, implying a role for the alternative pathway. Normal human serum rendered deficient in D did not sustain C3b deposition until its reconstitution with D, indicating an absolute requirement for a protein unique to the alternative pathway and essential to the cleavage activation of the C3 amplification convertase of that pathway. The capacity of the excess control proteins H and I to prevent C3b deposition onto GBM incubated in C2-deficient serum provided further evidence for the direct activation of the alternative pathway in this system. The use of radiolabeled monoclonal antibody to localize the deposited C3b afforded specificity and quantitation of about 100 ng of C3b/mg of GBM. Immunohistochemical analysis with a monoclonal antibody to detect C3b demonstrated its deposition to be confined to the epithelial surface of the GBM.  相似文献   

11.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2489-2498
Tannic acid in glutaraldehyde fixatives greatly enhanced the visualization of two developmentally and morphologically distinct stages in glomerular basement membrane (GBM) formation in newborn rat kidneys. First, in early stage glomeruli, double basement membranes between endothelial cells and podocytes were present and, in certain areas, appeared to be fusing. Second, in maturing stage glomeruli, elaborate loops and outpockets of basement membrane projected into epithelial, but not endothelial, sides of capillary walls. When Lowicryl thin sections from newborn rat kidneys were sequentially labeled with rabbit anti-laminin IgG and anti-rabbit IgG-colloidal gold, gold bound across the full width of all GBMs, including double basement membranes and outpockets. The same distribution was obtained when sections from rats that received intravenous injections of rabbit anti-laminin IgG 1 h before fixation were labeled directly with anti- rabbit IgG-colloidal gold. When kidneys were fixed 4 d after anti- laminin IgG injection, however, loops beneath the podocytes in maturing glomeruli were usually unlabeled and lengths of unlabeled GBM were interspersed with labeled lengths. In additional experiments, rabbit anti-laminin IgG was intravenously injected into newborn rats and, 4-14 d later, rats were re-injected with sheep anti-laminin IgG. Sections were then doubly labeled with anti-rabbit and anti-sheep IgG coupled to 10 and 5 nm colloidal gold, respectively. Sheep IgG occurred alone in outpockets of maturing glomeruli and also in lengths of GBM flanked by lengths containing rabbit IgG. These results indicate that, after fusion of double basement membranes, new segments of GBM appear beneath developing podocytes and are subsequently spliced into existing GBM. This splicing provides the additional GBM necessary for expanding glomerular capillaries.  相似文献   

13.
Reducible cross-links in purified human glomerular basement membrane (GBM) were examined with an ion exchange chromatographic system that provided complete separation of cross-link standards and glucosylamines. After hydration in phosphate buffer, lyophilized GBM was reduced with tritiated borohydride. Chromatographic separation revealed two major radioactive peaks, identified as di-hydroxylysinonorleucine (di-OHLNL) and hydroxyaldolhistidine (HAH) by coelution with authentic di-OHLNL and HAH standards. Radioactive glucitol-lysine and glucitol-hydroxylysine were also identified on the basis of their co-elution with synthetic standards. The findings document the existence and establish the nature of the major reducible cross-links in adult human GBM.  相似文献   

14.
In developing glomeruli, laminin alpha5 replaces laminin alpha1 in the glomerular basement membrane (GBM) at the capillary loop stage, a transition required for glomerulogenesis. To investigate domain-specific functions of laminin alpha5 during glomerulogenesis, we produced transgenic mice that express a chimeric laminin composed of laminin alpha5 domains VI through I fused to the human laminin alpha1 globular (G) domain, designated Mr51. Transgene-derived protein accumulated in many basement membranes, including the developing GBM. When bred onto the Lama5 -/- background, Mr51 supported GBM formation, preventing the breakdown that normally occurs in Lama5 -/- glomeruli. In addition, podocytes exhibited their typical arrangement in a single cell layer epithelium adjacent to the GBM, but convolution of glomerular capillaries did not occur. Instead, capillaries were distended and exhibited a ballooned appearance, a phenotype similar to that observed in the total absence of mesangial cells. However, here the phenotype could be attributed to the lack of mesangial cell adhesion to the GBM, suggesting that the G domain of laminin alpha5 is essential for this adhesion. Analysis of an additional chimeric transgene allowed us to narrow the region of the alpha5 G domain essential for mesangial cell adhesion to alpha5LG3-5. Finally, in vitro studies showed that integrin alpha3beta1 and the Lutheran glycoprotein mediate adhesion of mesangial cells to laminin alpha5. Our results elucidate a mechanism whereby mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin alpha5 in the GBM.  相似文献   

15.
Incubation of glomerular homogenates (200 micrograms protein) with glomerular basement membrane (GBM, 30-35 micrograms hydroxyproline) at pH 7.5 for 36 h at 37 degrees C resulted in significant GBM degradation as measured by hydroxyproline release (40 +/- 6%, n = 17). GBM degradation increased with increasing incubation time (12-48 h) and glomerular protein concentration (50-250 micrograms). GBM degradation was not significantly decreased by inhibitors of serine or cysteine proteinases or the inhibitor of bacterial metalloproteinases, phosphoramidon. In contrast GBM degradation by glomerular homogenates was markedly inhibited by the metal chelators 10mM EDTA (-95 +/- 3%, n = 7) and 2mM 1,10-phenanthroline (-96 +/- 2%, n = 4). Preincubation of glomerular homogenates with trypsin (followed by soya bean trypsin inhibitor) markedly stimulated GBM degradation (+103 +/- 20%, n = 11). These results document the presence of a GBM-degrading, neutral metalloproteinase(s) in glomeruli suggesting an important role for this enzyme in glomerular pathophysiology.  相似文献   

16.
Kidney glomerular basement membranes (GMBs) originate in development from fusion of a dual basement membrane between endothelial cells and primitive epithelial podocytes. After fusion, segments of newly synthesized matrix, derived primarily from podocytes, appear as subepithelial outpockets and are spliced into GBMs during glomerular capillary loop expansion. To investigate GBM assembly further, we examined newborn mouse kidneys with monoclonal rat anti-mouse laminin IgGs (MAb) conjugated to horseradish peroxidase (HRP). In adults, these MAb strongly label glomerular mesangial matrices but bind only weakly or not at all to mature GBMs. In contrast, anti-laminin MAb intensely bound newborn mouse GBMs undergoing initial assembly. After intraperitoneal injection of MAb-HRP into neonates, dense binding occurred across both subendothelial and subepithelial pre-fusion GMBs as well as forming mesangial matrices. Considerably less MAb binding was seen, however, in post-fusion GBMs from more mature glomeruli in the same section, although mesangial matrices remained positive. In addition, new subepithelial segments in areas of splicing were negative. These results conflict with those obtained previously with injections of polyclonal anti-laminin IgGs into newborns or adults, which result in complete labeling of all GBMs. Although epitope masking cannot be completely excluded, we believe that decreased MAb binding to developing GBM reflects actual epitope loss. This loss could occur by laminin isoform substitution, conformational change, and/or proteolytic processing during GBM assembly.  相似文献   

17.
Sulfated proteoglycans (fixed anionic sites) on the glomerular basement membrane (GBM) of kidneys from diabetic and nondiabetic patients have been demonstrated by electron microscopy using polycationic dyes (ruthenium red, polyethyleneimine). These substances were used for immersion fixation of renal biopsy specimens. The thickened GBM of diabetics revealed a reduced proteoglycan content within both the narrowed laminae rarae, where normally particles were seen at 60 nm intervals. Proteinuria was observed in all such cases, but no immunopathological alterations of the basement membranes were seen. With both tracer substances anionic sites were also demonstrated in different segments of the thickened lamina densa in diabetics. In polyethyleneimine-treated biopsies some segments of the membrane showed increased anionic moieties at the junction of the basement membrane and the epithelial and endothelial cell membranes. These are probably acid glycoproteins linked to the cell membrane and the synthesis of these basement membrane components may represent a compensatory mechanism seeking to restore normal permeability.  相似文献   

18.
The macromolecular components of bovine glomerular basement membrane (GBM) and lens capsules (anterior and posterior) solubilized by sequential extractions with denaturing agents were quantitated and characterized by polyacrylamide gel electrophoresis, CL-6B filtration, and DEAE-cellulose chromatography with the help of immunochemical techniques. Laminin, entactin, fibronectin, and heparan sulfate proteoglycan were primarily recovered (over 80%) from both basement membranes in a guanidine HCl extract which contained only a limited amount of the total protein (10-14%); most of the remainder of these noncollagenous components could be solubilized by the guanidine in the presence of reducing agent. Although a portion of the Type IV collagen could be obtained by these treatments, effective extraction of this protein depended on exposure to sodium dodecyl sulfate under reducing conditions. Immunoblot analysis revealed a remarkably similar pattern for GBM and lens capsule Type IV collagens with prominent bands of Mr = 390,000, 210,000, and 190,000 being evident. Fibronectin was present in much greater amounts in GBM than lens capsule while the reverse was true for entactin. In both GBM and lens capsules, the entactin (Mr = 150,000) exceeded laminin; the latter protein on immunoblotting was found to contain primarily the alpha-subunit (Mr = 200,000). The size of the heparan sulfate proteoglycan from anterior (Mr = 400,000) and posterior lens capsule (Mr greater than 500,000) was substantially larger than that from GBM (Mr = 200,000). During DEAE-cellulose chromatography under nonreducing conditions in a denaturing solvent, a portion of the Type IV collagen coeluted with the proteoglycan from these membranes. Considerable Bandeiraea simplicifolia I binding activity (alpha-D-galactose specific) was observed in GBM and lens capsule extracts and column fractions which could not be accounted for by laminin alone. Several components which reacted with this lectin were seen on transblots and among these Type IV collagen was identified. In contrast to the basement membranes from bovine tissues, the constituents from human GBM did not react with the B. simplicifolia I lectin.  相似文献   

19.
The composition and exact structure of the non-cellular mesangial matrix in the glomerulus of the human kidney are a matter of debate. It may appear like a structure similar to the glomerular basement membrane (GBM), it has been described to contain microfilaments. The exact transport route of fluids, solvents and immunocomplexes in the mesangium is not well-known either. We know that in some glomerular diseases immunocomplexes can be found in the GBM and the mesangium at the same time in the same patient. A possible explanation of the above findings could be provided by our hypothesis, i.e. the existence of a well-defined mesangial channel network (MChN). This MChN would consist of intercommunicating channels, which were embedded into the spongy cytoplasm of the mesangial cells (MCs) and surrounded by the plasma membrane of the mesangial cells. The MChN would lead from the subendothelial space through deep mesangium to the vascular pole or the juxtaglomerular apparatus and may transport fluid and other materials such as immunocomplexes into the mesangium. It would be continuous with the GBM. Microfilaments of the MC would be anchored to the walls of the MChN regulating its diameter, thus mesangial fluid transport and pressure. The dilatation of these channels by mechanical obstruction could contribute to glomerular sclerosis. The hypothesis can be challenged by methods like electronmicroscopy, immunoelectronmicroscopy, confocal laser-scanning microscopy, and vital stain studies. We provide some images suggesting the existence of the channel and its connection with the GBM. If the hypothesis was true, it could contribute to understanding of mesangial transport processes, pressure regulation and pathogenesis of glomerular mesangial diseases.  相似文献   

20.
Conflicting results of previous electron microscopy studies and concerns about the validity of immunoperoxidase technique employed in those studies to accurately localize endogenous IgG in rat glomerular basement membrane (GBM) prompted us to use other techniques to answer the following question: Does endogenous IgG permeate the matrix of GBM? Immunofluorescence, radioimmunoassay (RIA), isoelectric focusing, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunodetection on Western blots were used to detect endogenous IgG in GBM. Direct immunofluorescence of normal frozen rat kidney sections prepared from in vivo perfused kidney showed endogenous IgG in a linear pattern of staining in the GBM. RIA for rat IgG found the IgG content of collagenase-solubilized GBM to be 0.48% of the dry weight. Immunodetection for rat IgG on Western blots of SDS-PAGE-separated GBM demonstrated endogenous IgG in purified collagenase-solubilized GBM. IgG was detected as an intact molecule with covalently linked light and heavy chains and not as small immunoreactive catabolic fragments. Isoelectric focusing followed by immunodetection on Western blot showed that part of the endogenous IgG in GBM was anionic. The results clearly show that under normal conditions, endogenous IgG can permeate into the collagen matrix of GBM in rat and that some of this IgG is more anionic than the IgG in serum. These findings may assist in understanding the transit of autoantibodies to subepithelial glomerular antigens located beneath the matrix of GBM in membranous glomerulonephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号