首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ou Y  Tong C  Zhang Y  Cai P  Gu J  Liu Y  Liu H  Wang H  Chu B  Zhu P 《Molecular biology reports》2009,36(1):145-152
Analysis of T cell receptor β variable region (TCRBV) gene rearrangement is useful for clonal assessment of abnormal T cell proliferations in various diseases. However, most primer panels previously used can only amplify the third complementarity-determining region. Following IMGT database we established a panel of primers, which can amplify entire sequences of all functional TCRBV families. To confirm the usefulness of this panel of primers, we detected different TCRBV repertoires. In 15 healthy donors, most of the BV families were expressed and appeared as a Gaussian distribution. 13 acute myeloid leukemia patients showed monoclonal or oligoclonal changes of BV15 family, and some of them also had monoclonal or oligoclonal expansion of BV2, BV4, BV6 or BV13 families. In one patient after allo-hematopoietic stem cell transplantation, monoclonal proliferation of BV10 family occurred during graft-versus-host disease. In conclusion, this panel of primers improves our abilities to analyze TCRBV repertoire changes in related diseases.  相似文献   

3.
Chimpanzees are used for a variety of disease models such as hepatitis C virus (HCV) infection, where Ag-specific T cells are thought to be critical for resolution of infection. The variable segments of the TCR alphabeta genes are polymorphic and contain putative binding sites for MHC class I and II molecules. In this study, we performed a comprehensive analysis of genes that comprise the TCR beta variable gene (TCRBV) repertoire of the common chimpanzee Pan troglodytes. We identified 42 P. troglodytes TCRBV sequences representative of 25 known human TCRBV families. BV5, BV6, and BV7 are multigene TCRBV families in humans and homologs of most family members were found in the chimpanzee TCRBV repertoire. Some of the chimpanzee TCRBV sequences were identical with their human counterparts at the amino acid level. Notably four successfully rearranged TCRBV sequences in the chimpanzees corresponded to human pseudogenes. One of these TCR sequences was used by a cell line directed against a viral CTL epitope in an HCV-infected animal indicating the functionality of this V region in the context of immune defense against pathogens. These data indicate that some TCRBV genes maintained in the chimpanzee have been lost in humans within a brief evolutionary time frame despite remarkable conservation of the chimpanzee and human TCRBV repertoires. Our results predict that the diversity of TCR clonotypes responding to pathogens like HCV will be very similar in both species and will facilitate a molecular dissection of the immune response in chimpanzee models of human diseases.  相似文献   

4.
T-cell clones (TCC) were raised from the peripheral blood of patients suffering from tree pollen allergy. All TCC were restricted by HLA-DR molecules. In order to investigate possible intervention targets in Type I allergic diseases, we examined T-cell receptor (TCR) and chain nucleotide sequences of five allergen-reactive human CD4+ TCC specific for a C-terminal epitope (BV 144) of Bet v 1, the major birch pollen allergen. Proliferation assays using synthetic peptides revealed the 10-mer LRAVESYLLA as minimal epitope for three TCC; two TCC also displayed reactivity with the nonapeptide LRAVESYLL. Two TCC expressed TCRBV2S3, all other BV144-specific TCC used diverse TCRAV and TCRBV gene segments. Moreover, the junctional regions encoding the third complementary determining regions (CDR3) of the TCR showed a striking heterogeneity in length and amino acid composition. Nevertheless, all TCC showed an arginine residue in the N-terminal region of their TCRBV CDR3 loops. Therefore, therapeutical strategies aimed at the clonal deletion of allergen-specific T-cell clones, providing help for IgE synthesis, will not be feasible. Our results cast a doubt on the theory that the CDR3 exclusively provides the primary contact with the peptide bound in the major histocompatibility (MHC) groove, and suggest additional interaction with MHC class II.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers Z47366-Z47376  相似文献   

5.
The tumour-associated antigen, Ep-CAM, is over-expressed in colorectal carcinoma (CRC). In the present study, a recombinant Ep-CAM protein or a human anti-idiotypic antibody (anti-Id) mimicking Ep-CAM, either alone or in combination, was used for vaccination of CRC patients (n=9). GM-CSF was given as an adjuvant cytokine. A cellular immune response was assessed by measuring anti-Ep-CAM lymphoproliferation, IFN- production (ELISPOT) and by analysing the TCR BV gene usage within the CD4+ and CD8+ T-cell subsets followed by CDR3 fragment analysis. A proliferative and/or IFN- T-cell response was induced against the Ep-CAM protein in eight out of nine patients, and against Ep-CAM-derived peptides in nine out of nine patients. Analysis of the TCR BV gene usage showed a significantly higher usage of BV12 family in CD4+ T cells of patients both before and after immunisation than in those of healthy control donors (p<0.05). In the CD8+ T-cell subset, a significant (p<0.05) increase in the BV19 usage was noted in patients after immunisation. In individual patients, a number of TCR BV gene families in both CD4+ and CD8+ T cells were over-expressed mainly in post-immunisation samples. Analysis of the CDR3 length polymorphism revealed a higher degree of clonality in post-immunisation samples than in pre-immunisation samples. In vitro stimulation with Ep-CAM protein confirmed the expansion of anti-Ep-CAM T-cell clones. The results indicate that immunisation with the Ep-CAM protein and/or anti-Id entails the induction of an anti-Ep-CAM T-cell response in CRC patients, and suggest that BV19+ CD8+ T cells might be involved in a vaccine-induced immune response.  相似文献   

6.
7.
Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.  相似文献   

8.
9.
10.
Population-based genetic associations have been reported between RFLPs detected with probes corresponding to the genes encoding the beta chain of the T-cell receptor for antigen (TCRB) and a variety of autoimmune disorders. In the case of multiple sclerosis (MS), these studies have localized a putative disease-associated gene to a region of approximately 110 kb in length, located within the TCRB locus. In the current study, all 14 known TCRBV (variable region) genes within the region of localization were mapped and identified. The nucleotide sequences of these genes were determined in a panel of six MS patients and six healthy controls, who were human-leukocyte antigen and TCRB-RFLP haplotype matched. Nine of the 14 TCRBV genes studied showed evidence of polymorphism. PCR-based assays for each of these polymorphic genes were developed, and allele and genotype frequencies were determined in a panel of DNA samples from 48 MS patients and 60 control individuals. No significant differences in allele, genotype, or phenotype frequencies were observed between the MS patients and controls for any of the 14 TCRBV-gene polymorphisms studied. In light of the extensive linkage disequilibrium across the region studied, the saturating numbers of polymorphisms examined, and the direct sequence analysis of all BV genes in the region, these results suggest that it is unlikely that germ-line polymorphism in the TCRBV locus makes a major contribution to MS susceptibility.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To increase blood safety Brazil introduced screening for anti-HBc among blood donors in 1993. There was a decrease in the hepatitis B virus (HB V) transmission, but this measure identified a great number ofHBsAg-negative, anti-HBc-positive donors. Surveillance policy determines that contacts of HBV carriers should be screened to HBV markers, but there is no recommendation about how to guide contacts of HBsAg-negative, anti-HBc-positive donors. Aiming to evaluate whether the contacts of this group are at greater risk for HB V infection, a cross-sectional study was performed to compare prevalence of HBV infection between contacts of HBsAg-positive blood donors (group I) and contacts of HBsAg-negative, anti-HBc-positive donors (group II). Contacts were submitted to a questionnaire and blood tests for HBV markers. In group I (n = 143), 53 (37.1%) were anti-HBc-positive and 11 (7.7%) were HBsAg-positive. In group II (n = 111), there were 9 and 0.9%, respectively. HB V exposure was associated with group I, sexual activity, blood transfusion, being one of the donor's parents, and living for more than ten years with the donor. Regarding the families as sample units, it was more common to find at least one member with HBV markers (p < 0.05) among the families of group I compared to group II. Contacts of HBsAg-negative, anti-HBc-positive individuals presented a much lower risk of having already been exposed to HBV and there is no need to screen them for HBV in low to moderate prevalence populations.  相似文献   

12.
Jin WJ  Chen CF  Liao HY  Gong LL  Yuan XH  Zhao BB  Zhang D  Feng X  Liu JJ  Wang Y  Chen GF  Yan HP  He YW 《PloS one》2012,7(3):e33356
Inflammation caused by chronic hepatitis B virus (HBV) infection is associated with the development of cirrhosis and hepatocellular carcinoma; however, the mechanisms by which HBV infection induces inflammation and inflammatory cytokine production remain largely unknown. We analyzed the gene expression patterns of lymphocytes from chronic HBV-infected patients and found that the expression of ZFP36, an AU-rich element (ARE)-binding protein, was dramatically reduced in CD4(+) and CD8(+) T lymphocytes from chronic HBV patients. ZFP36 expression was also reduced in CD14(+) monocytes and in total PBMCs from chronic HBV patients. To investigate the functional consequences of reduced ZFP36 expression, we knocked down ZFP36 in PBMCs from healthy donors using siRNA. siRNA-mediated silencing of ZFP36 resulted in dramatically increased expression of multiple inflammatory cytokines, most of which were also increased in the plasma of chronic HBV patients. Furthermore, we found that IL-8 and RANTES induced ZFP36 downregulation, and this effect was mediated through protein kinase C. Importantly, we found that HBsAg stimulated PBMCs to express IL-8 and RANTES, resulting in decreased ZFP36 expression. Our results suggest that an inflammatory feedback loop involving HBsAg, ZFP36, and inflammatory cytokines may play a critical role in the pathogenesis of chronic HBV and further indicate that ZFP36 may be an important target for anti-inflammatory therapy during chronic HBV infection.  相似文献   

13.
Enlarged lymph nodes of mice with lpr mutation consist predominantly of CD4?CD8? (double-negative: DN) T cells. Among them, TCRBV8S3 (Vβ 8.3) T cells are overrepresented as compared to those in single-positive (SP) T cells. To address the question of whether the expansion of oligoclonal T cells is responsible for the increase in TCRBV8S3 cells, we examined the TCRBJ gene repertoires of BV8S3 DN and SP T cells from multiple MRL lpr/lpr mice. The BJ repertoires of BV3 (Vβ3), BV8S1 (Vβ8.1) and BV8S2 (Vβ8.2) were studied for comparison with those of BV8S3 T cells. The employed method, which was based on a PCR-ELISA technique, was newly developed and allowed us to make a precise quantitation of TCRBJ gene usage of the multiple lymphocyte samples. The results showed that there were no biases of the BJ gene usage by BV8S3 DN T cells as well as other BV T cells. Furthermore, the BJ gene usage of CD4 and CD8 BV8S3 T cells was conserved by the DN T cells. It is suggested that the BV8S3 DN T cells were not expanded by specific antigens. The expansion may result from aberrant regulation specific to the BV8S3-expressing T cells.  相似文献   

14.
Specific activation of T cells appears to be a prerequisite for viral clearance during hepatitis B virus (HBV) infection. The T-cell response to HBV core protein is essential in determining an acute or chronic outcome of HBV infection, but how this immune response contributes to the course of infection remains unclear. This is due to results obtained from humans, which are restricted to phenomenological observations occurring during the clinical onset after HBV infection. Thus, a useful animal model is needed. Characterization of the T-cell response to the core protein (WHcAg) of woodchuck hepatitis virus (WHV) in woodchucks contributes to the understanding of these mechanisms. Therefore, we investigated the response of woodchuck peripheral blood mononuclear cells (PBMCs) to WHcAg and WHcAg-derived peptides, using our 5-bromo-2'-deoxyuridine assay. We demonstrated WHcAg-specific proliferation of PBMCs and nylon wool-nonadherent cells from acutely WHV-infected woodchucks. Using a cross-reacting anti-human T-cell (CD3) antiserum, we identified nonadherent cells as woodchuck T cells. T-cell epitope mapping with overlapping peptides, covering the entire WHcAg, revealed T-cell responses of acutely WHV-infected woodchucks to peptide1-20, peptide100-119, and peptide112-131. Detailed epitope analysis in the WHcAg region from amino acids 97 to 140 showed that T cells especially recognized peptide97-110. Establishment of polyclonal T-cell lines with WHcAg or peptide97-110 revealed reciprocal stimulation by peptide97-110 or WHcAg, respectively. We vaccinated woodchucks with peptide97-110 or WHcAg to prove the importance of this immunodominant T-cell epitope. All woodchucks immunized with peptide97-110 or WHcAg were protected. Our results show that the cellular immune response to WHcAg or to one T-cell epitope protects woodchucks from WHV infection.  相似文献   

15.
16.
17.
The development of therapeutic vaccines for chronic hepatitis B virus (HBV) infection has been hampered by host immune tolerance and the generally low magnitude and inconsistent immune responses to conventional vaccines and proposed new delivery methods. Electroporation (EP) for plasmid DNA (pDNA) vaccine delivery has demonstrated the enhanced immunogenicity of HBV antigens in various animal models. In the present study, the efficiency of the EP-based delivery of pDNA expressing various reporter genes first was evaluated in normal woodchucks, and then the immunogenicity of an analog woodchuck hepatitis virus (WHV) surface antigen (WHsAg) pDNA vaccine was studied in this model. The expression of reporter genes was greatly increased when the cellular uptake of pDNA was facilitated by EP. The EP of WHsAg-pDNA resulted in enhanced, dose-dependent antibody and T-cell responses to WHsAg compared to those of the conventional hypodermic needle injection of WHsAg-pDNA. Although subunit WHsAg protein vaccine elicited higher antibody titers than the DNA vaccine delivered with EP, T-cell response rates were comparable. However, in WHsAg-stimulated mononuclear cell cultures, the mRNA expression of CD4 and CD8 leukocyte surface markers and Th1 cytokines was more frequent and was skewed following DNA vaccination compared to that of protein immunization. Thus, the EP-based vaccination of normal woodchucks with pDNA-WHsAg induced a skew in the Th1/Th2 balance toward Th1 immune responses, which may be considered more appropriate for approaches involving therapeutic vaccines to treat chronic HBV infection.  相似文献   

18.
19.
HBsAg clearance is associated with clinical cure of chronic hepatitis B virus (HBV) infection. Quantification of HBsAg may help to predict HBsAg clearance during the natural course of HBV infection and during antiviral therapy. Most studies investigating quantitative HBsAg were performed in HBV mono-infected patients. However, the immune status is considered to be important for HBsAg decline and subsequent HBsAg loss. HIV co-infection unfavorably influences the course of chronic hepatitis B. In this cross-sectional study we investigated quantitative HBsAg in 173 HBV/HIV co-infected patients from 6 centers and evaluated the importance of immunodeficiency and antiretroviral therapy. We also compared 46 untreated HIV/HBV infected patients with 46 well-matched HBV mono-infected patients. HBsAg levels correlated with CD4 T-cell count and were higher in patients with more advanced HIV CDC stage. Patients on combination antiretroviral therapy (cART) including nucleos(t)ide analogues active against HBV demonstrated significant lower HBsAg levels compared to untreated patients. Importantly, HBsAg levels were significantly lower in patients who had a stronger increase between nadir CD4 and current CD4 T-cell count during cART. Untreated HIV/HBV patients demonstrated higher HBsAg levels than HBV mono-infected patients despite similar HBV DNA levels. In conclusion, HBsAg decline is dependent on an effective immune status. Restoration of CD4 T-cells during treatment with cART including nucleos(t)ide analogues seems to be important for HBsAg decrease and subsequent HBsAg loss.  相似文献   

20.
The role of non-lymphoid tissue T cells expressing the BV9 family T-cell receptor (TCRBV9) was studied in mice chronically infected with the Trypanosoma cruzi. Heart and skeletal muscles had higher frequencies and ratios of CD8+ TCRBV9+ to CD4+ TCRBV9+ T cells than lymph nodes. Also, homing experiments of CFSE-labeled T cells showed preferential homing of TCRBV9+ T cells to heart tissue. In vitro proliferation assays showed higher [3H]thymidine uptake by non-lymphoid tissue TCRBV9+ T cells than lymph node TCRBV9+ T cells co-cultured with antigen-presenting cells (APC), in response to T. cruzi amastigote antigens (TcAg). Lymph node TCRBV9+ T cells secreted IFN-gamma and IL-10, but not IL-4, upon stimulation with TcAg in the presence of APC. Moreover, non-lymphoid tissue-derived TCRBV9+ T cells showed impairment of IFN-gamma, no IL-4 production, and higher levels of IL-10 secretion under the same conditions. Our results show that T. cruzi-specific IFN-gamma- and IL-10-producing TCR BV9+ T cells develop in the mouse lymph nodes during chronic infection with T. cruzi. Upon homing to non-lymphoid parasitized tissues, IFN-gamma secretion might subside due to the overt secretion of IL-10, of which TCRBV9+ T cells represent a significant source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号