共查询到20条相似文献,搜索用时 46 毫秒
1.
Shanta R Bhattarai Remant B Kc Sun Y Kim Manju Sharma Myung S Khil Pyoung H Hwang Gyung H Chung Hak Y Kim 《Journal of nanobiotechnology》2008,6(1):1-9
This project involved the synthesis of N-hexanoyl chitosan or simply modified chitosan (MC) stabilized iron oxide nanoparticles (MC-IOPs) and the biological evaluation of MC-IOPs. IOPs containing MC were prepared using conventional methods, and the extent of cell uptake was evaluated using mouse macrophages cell line (RAW cells). MC-IOPs were found to rapidly associate with the RAW cells, and saturation was typically reached within the 24 h of incubation at 37°C. Nearly 8.53 ± 0.31 pg iron/cell were bound or internalized at saturation. From these results, we conclude that MC-IOPs effectively deliver into RAW cells in vitro and we also hope MC-IOPs can be used for MRI enhancing agents in biomedical fields. 相似文献
2.
Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging 总被引:6,自引:0,他引:6
Vuu K Xie J McDonald MA Bernardo M Hunter F Zhang Y Li K Bednarski M Guccione S 《Bioconjugate chemistry》2005,16(4):995-999
A novel dual-labeled nanoparticle for use in labeling and tracking cells in vivo is described. We report the construction and characterization of these gadolinium-rhodamine nanoparticles. These particles are constructed from lipid monomers with diacetylene bonds that are sonicated and photolyzed to form polymerized nanoparticles. Cells are efficiently labeled with these nanoparticles. We have inoculated labeled tumor cells subcutaneouosly into the flanks of C3H mice and have been able to image these labeled tumor cells via MRI and optical imaging. Furthermore, the labeled tumor cells can be visualized via fluorescent microscopy after tissue biopsy. Our results suggest that these nanoparticles could be used to track cells in vivo. This basic platform can be modified with different fluorophores and targeting agents for studying metastisic cell, stem cell, and immune cell trafficking among other applications. 相似文献
3.
Jelena Kolosnjaj-Tabi Claire Wilhelm Olivier Clément Florence Gazeau 《Journal of nanobiotechnology》2013,11(Z1):S7
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. 相似文献
4.
Iron oxide nanoparticles (IONPs) are broadly examined nanomaterials for their promising engagement of the progressive in biomedical application, for intense selective drug delivery and multimodal imaging. IONPs are commonly less price, and enhanced biocompatibility can be effectively functionalized with a broad range of functioning ligand, and have established to be active in improving clinical diagnostics tools and magnetic resonance imaging contrast agents. Consequently, IONPs could be used as a promising magnetic resonance imaging contrast. In this context, we have established an IONPs based framework for the multimodal in vitro imaging approach of gastric cancer cell lines that fast high level of glypican-3 protein (GLY-3) on the superficial. In this regards, a new GLY-3 peptide targeting model established and fabricated to IONPs. The aqueous property, biocompatibility profile and physical-chemical properties of the functionalized IONPs were characterised with various spectroscopical methods. The viability of the gastric SGC-7901 cells was examined by MTT assay. Further, the viability of the cells was evidenced through fluorescence staining methods. The binding ability and cellular uptake properties of naked IONPs and functionalized IONPs (GPC3@IONPs) were examined via laser scanning confocal microscopy (CLSM) in GLY-3 positive gastric cells (SGC-7901 cells). The obtained outcomes displayed that the GLY-3 functionalized IONPs remarkably improved the magnetic resonance imaging contrasts and were actively assured and occupied up by gastric cell lines without damaging the non-cancerous cells. 相似文献
5.
The multimodal strategy incorporating T1-weighted magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescence imaging can complement their strengths to provide images with high sensitivity and spatial resolution for noninvasively and dynamically monitoring endothelial progenitor cells (EPCs) in potential EPC-dominated therapies. Here we report the development of a protein-based imaging probe, bCD-PLL-Cy5.5 Conjugate 1, in which the bacterial cytosine deaminase (bCD) protein was modified with poly-l-lysine (PLL) that is labeled with imaging reporters, including T1-weighted MRI contrast chelator and NIR fluorophore. Conjugate 1 showed low cytotoxicity in EPCs isolated from the rabbit peripheral blood. The normalized cell viability was maintained above 90% after incubation for 1 to 5 days. Fluorescence microscopy of live cells indicated rapid cellular uptake of Conjugate 1 into EPCs in 15 minutes, and flow cytometry studies demonstrated the time-dependent internalization of Conjugate 1 with maximum uptake 48 hours after the treatment. MRI of phantoms demonstrated significant reduction of the T1 value of the EPC pellet that was pretreated with 2 μM of Conjugate 1 for 24 hours. Our preliminary data suggest that as a multimodal imaging contrast medium, Conjugate 1 offers a promising imaging probe for tracking the delivery and therapeutic response of EPCs in vivo. 相似文献
6.
High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays. 相似文献
7.
Shu CY Ma XY Zhang JF Corwin FD Sim JH Zhang EY Dorn HC Gibson HW Fatouros PP Wang CR Fang XH 《Bioconjugate chemistry》2008,19(3):651-655
Water-soluble gadofullerides exhibited high efficiency as magnetic resonance imaging (MRI) contrast agents. In this paper, we report the conjugation of the newly synthesized gadofulleride, Gd@C82O6(OH) 16(-)(NHCH2CH2COOH)8, with the antibody of green fluorescence protein (anti-GFP), as a model for "tumor targeted" imaging agents based on endohedral metallofullerenes. In this model system, the activity of the anti-GFP conjugate can be conveniently detected by green fluorescence protein (GFP), leading to in vitro experiments more direct and facile than those of tumor antibodies. Objective-type total internal reflection fluorescence microscopy revealed that each gadofulleride aggregate conjugated on average five anti-GFPs, and the activity of anti-GFPs was preserved after conjugation. In addition, the gadofulleride/antibody conjugate exhibited higher water proton relaxivity (12.0 mM (-1) s (-1)) than the parent gadofulleride aggregate (8.1 mM (-1) s (-1)) in phosphate buffered saline at 0.35 T, as also confirmed by T1-weighted images of phantoms. These observations clearly indicate that the synthesized gadofulleride/antibody conjugate not only has targeting potential, but also exhibits higher efficiency as an MRI contrast agent. 相似文献
8.
Two novel Gd(III) complexes with functionalised polyaminocarboxylate macrocycles, 1,4,7-tris(carboxymethyl)-9,24-dioxo-14,19-dioxa-1,4,7,10,23- pentaazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-9,25-dioxo-14,17,20-trioxa-1,4,7,10,23- pentaazacyclotridecane (L(2)), were prepared in good yield. Their potential use as magnetic resonance imaging (MRI) contrast agents (CAs) was evaluated by investigating their relaxation behaviour as a function of pH, temperature and magnetic field strength. The 1/T(1) proton relaxivities at 20 MHz and 25 degrees C of GdL(1) (5.87 mM(-1) s(-1)) and GdL(2) (6.14 mM(-1) s(-1)) were found to be significantly higher than the clinically used Gd 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd(DOTA)(-)) and Gd diethylenetriaminepentaethanoic acid (Gd(DTPA)(2-)). The complexes possess one water molecule in the inner coordination sphere whose mean residence lifetime was estimated to be 1.1 and 1.5 micros at 25 degrees C by variable temperature (VT) (17)O NMR spectroscopy. 相似文献
9.
Horak D Babic M Jendelová P Herynek V Trchová M Pientka Z Pollert E Hájek M Syková E 《Bioconjugate chemistry》2007,18(3):635-644
New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide according to two methods. In the first method, precipitation was done in the presence of D-mannose solution (in situ coating); the second method involved oxidation of precipitated magnetite with sodium hypochlorite followed by addition of D-mannose solution (postsynthesis coating). Selected nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), elemental analysis, dynamic light scattering, infrared (IR), X-ray powder analysis, and ultrasonic spectrometry. While the first preparation method produced very fine nanoparticles ca. 2 nm in diameter, the second one yielded ca. 6 nm particles. Addition of D-mannose after synthesis did not affect the iron oxide particle size. UV-vis spectroscopy suggested that D-mannose suppresses the nonspecific sorption of serum proteins from DMEM culture medium on magnetic nanoparticles. Rat bone marrow stromal cells (rMSCs) were labeled with uncoated and d-mannose-modified iron oxide nanoparticles and with Endorem (Guerbet, France; control). Optical and transmission electron microscopy confirmed the presence of D-mannose-modified iron oxide nanoparticles inside the cells. D-mannose-modified nanoparticles crossed the cell membranes and were internalized well by the cells. Relaxivity measurements of labeled cells in gelatin revealed very high relaxivities only for postsynthesis D-mannose-coated iron oxide nanoparticles. 相似文献
10.
Artemov D 《Journal of cellular biochemistry》2003,90(3):518-524
Magnetic resonance imaging (MRI) produces high-resolution three-dimensional maps delineating morphological features of the specimen. Differential contrast in soft tissues depends on endogenous differences in water content, relaxation times, and/or diffusion characteristics of the tissue of interest. The specificity of MRI can be further increased by exogenous contrast agents (CA) such as gadolinium chelates, which have been successfully used for imaging of hemodynamic parameters including blood perfusion and vascular permeability. Development of targeted MR CA directed to specific molecular entities could dramatically expand the range of MR applications by combining the noninvasiveness and high spatial resolution of MRI with specific localization of molecular targets. However, due to the intrinsically low sensitivity of MRI (in comparison with nuclear imaging), high local concentrations of the CA at the target site are required to generate detectable MR contrast. To meet these requirements, the MR targeted CA should recognize targeted cells with high affinity and specificity. They should also be characterized by high relaxivity, which for a wide variety of CA depends on the number of contrast-generating groups per single molecule of the agent. We will review different designs and applications of targeted MR CA and will discuss feasibility of these approaches for in vivo MRI. 相似文献
11.
12.
《Journal of liposome research》2013,23(2):837-855
AbstractSmall unilamellar liposomes were used as carriers for chelates of gadolinium as organ specific magnetic resonance imaging (MRI) contrast agents. The pharmacokinetic and imaging properties of the lipophilic liposome membrane associated chelate diethylenetriaminepentaacetate-stearylamide (DTPA-SA) were investigated. Gadolinium-DTPA-SA liposomes accumulated in the liver of rats at a peak concentration of 60% of the injected dose 4 hours after application. The elimination half-life from the liver was 61 h. Tl-weighted MR images of this liposomal Gd-chelate in rats and dogs gave a strong signal enhancement of the abdominal organs, liver and spleen. High blood concentrations of the Gd-DTPASA liposomes, reaching 60% of the injected dose after 30 min., decreasing to 40% after 2 hours, suggest their potential as a contrast agent for the blood pool. The gadolinium chelate benzoyloxypropionictetraacetate (Gd-BOPTA) was entrapped in liposomes of different lipid composition. Pharmacokinetic studies of liposome preparations containing a poly(ethylene)glycol (PEG) modified lipid showed that high levels of 80 - 60 % of the injected dose remained in the blood, 15 to 60 minutes after application. Peak blood concentrations of liposomes without PEG reached only 30%, with a correspondingly higher uptake in the liver and the spleen. Thus, both the lipophilic chelate Gd-DTPA-SA, as well as Gd-BOPTA entrapped within the aqueous volume of liposomes possess not only a potential as a liver and spleen specific contrast agent, but also for the imaging of the vascular system. 相似文献
13.
We described the preparation of the glycol chitosan/heparin immobilized iron oxide nanoparticles (composite NPs) as a magnetic resonance imaging agent with a tumor-targeting characteristic. The iron oxide nanoseeds used clinically as a magnetic resonance imaging agent were immobilized into the glycol chitosan/heparin network to form the composite NPs. To induce the ionic interaction between the iron oxide nanoseeds and glycol chitosan, gold was deposited on the surface of iron oxide nanoseeds. After the immobilization of gold-deposited iron oxide NPs into the glycol chitosan network, the NPs were stabilized with heparin based on the ionic interaction between cationic glycol chitosan and anionic heparin. FE-SEM (field emission-scanning electron microscopy) and a particle size analyzer were used to observe the formation of the stabilized composite NPs, and a Jobin-Yvon Ultima-C inductively coupled plasma-atomic emission spectrometer (ICP-AES) was used to measure the contents (%) of formed iron oxide nanoseeds as a function of reaction temperature and formed gold deposited on the iron oxide nanoparticles. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor-targeting ability of the composite NPs using a noninvasive NIR fluorescence imaging technology. To observe the MRI contrast characteristic, the composite NPs were injected into the tail veins of tumor-bearing mice to demonstrate their selective tumoral distribution. The MR images were collected with conventional T(2)-weighted spin echo acquisition parameters. 相似文献
14.
Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties. 总被引:1,自引:0,他引:1
D L Ladd R Hollister X Peng D Wei G Wu D Delecki R A Snow J L Toner K Kellar J Eck V C Desai G Raymond L B Kinter T S Desser D L Rubin 《Bioconjugate chemistry》1999,10(3):361-370
We have synthesized and evaluated five series of polymeric gadolinium chelates which are of interest as potential MRI blood pool contrast agents. The polymers were designed so that important physical properties including molecular weight, relaxivity, metal content, viscosity, and chelate stability could be varied. We have shown that, by selecting polymers of the appropriate MW, extended blood pool retention can be achieved. In addition, relaxivity can be manipulated by changing the polymer rigidity, metal content affected by monomer selection, viscosity by polymer shape, and chelate stability by chelator selection. 相似文献
15.
Gunanathan C Pais A Furman-Haran E Seger D Eyal E Mukhopadhyay S Ben-David Y Leitus G Cohen H Vilan A Degani H Milstein D 《Bioconjugate chemistry》2007,18(5):1361-1365
Novel estrogen-conjugated pyridine-containing Gd(III) and Eu(III) contrast agents (EPTA-Gd/Eu) were designed and effectively synthesized. Convenient to administration and MRI experiments, both EPTA-Gd and EPTA-Eu are soluble in water. The EPTA-Gd selectively binds with a micromolar affinity to the estrogen receptor and induces proliferation of human breast cancer cells. The EPTA-Gd is not lethal and does not cause any adverse effects when administrated intravenously. It enhances T1 and T2 nuclear relaxation rates of water and serves as a selective contrast agent for localizing the estrogen receptor by MRI. 相似文献
16.
Briley-Saebo K Bjørnerud A Grant D Ahlstrom H Berg T Kindberg GM 《Cell and tissue research》2004,316(3):315-323
The purpose of this study was to determine the cellular distribution and degradation in rat liver following intravenous injection of superparamagnetic iron oxide nanoparticles used for magnetic resonance imaging (NC100150 Injection). Relaxometric and spectrophotometric methods were used to determine the concentration of the iron oxide nanoparticles and their degradation products in isolated rat liver parenchymal, endothelial and Kupffer cell fractions. An isolated cell phantom was also constructed to quantify the effect of the degradation products on the loss of MR signal in terms of decreased transverse relaxation times, T2*. The results of this study show that iron oxide nanoparticles found in the NC100150 Injection were taken up and distributed equally in both liver endothelial and Kupffer cells following a single 5 mg Fe/kg body wt. bolus injection in rats. Whereas endothelial and Kupffer cells exhibited similar rates of uptake and degradation, liver parenchymal cells did not take up the NC100150 Injection iron oxide particles. Light-microscopy methods did, however, indicate an increased iron load, presumably as ferritin/hemosiderin, within the hepatocytes 24 h post injection. The study also confirmed that compartmentalisation of ferritin/hemosiderin may cause a significant decrease in the MRI signal intensity of the liver. In conclusion, the combined results of this study imply that the prolonged presence of breakdown product in the liver may cause a prolonged imaging effect (in terms of signal loss) for a time period that significantly exceeds the half-life of NC100150 Injection iron oxide nanoparticles in liver. 相似文献
17.
Swanson SD Kukowska-Latallo JF Patri AK Chen C Ge S Cao Z Kotlyar A East AT Baker JR 《International journal of nanomedicine》2008,3(2):201-210
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy. 相似文献
18.
Targeted contrast agents for magnetic resonance imaging and ultrasound 总被引:11,自引:0,他引:11
The development of contrast agents that can be localized to a particular tissue or cellular epitope will potentially allow the noninvasive visualization and characterization of a variety of disease states. Recent advances have been made in the field of molecular imaging with magnetic resonance imaging and ultrasound and varied approaches have been devised to overcome the high background tissue signal. The types of agents and applications developed include gadolinium-conjugated targeting molecules for imaging of fibrin, superparamagnetic iron oxide particles for stem-cell tracking, multimodal perfluorocarbon nanoparticles for visualization of angiogenesis, liposomes for targeting atheroma components, and microbubbles for imaging transplant rejection. 相似文献
19.
Yesen Zhang Yongkun Guo Bingshan Wu Hongtian Zhang Chunying Liu Jianhua Ma Yiwu Dai Ruxiang Xu Zhijun Yang 《Biotechnology letters》2013,35(12):1997-2004
Neural stem cells (NSCs) have great prospects in therapy for neurological disorders. However, the correlation between improved function and stem cell transplantation has not been fully elucidated. A non-invasive method for stem cell tracking is crucial for clinical studies. In the present study, NSCs were infected with lentiviral vectors, and the expression of transferrin receptor (TfR) in neural stem cells after lentivirus transfection (TfR-NSC) was confirmed by western blot analysis. TfR-NSCs were incubated with 1.8 nM ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) or transferrin (Tf)-conjugate of USPIO nanoparticles (Tf-USPIOs). Tf-USPIO enhanced the cellular iron content in TfR-NSCs 80 ± 18 % compared to USPIOs. These results demonstrated that TfR overexpressed in neural stem cells specifically internalized Tf-USPIOs. Furthermore, the results indicate that TfR reporter imaging may be a valuable way to evaluate the efficacy of neural stem cell treatment. 相似文献