共查询到20条相似文献,搜索用时 15 毫秒
1.
新型钾通道开放剂对心血管ATP-敏感性钾通道基因表达的调节作用 总被引:2,自引:0,他引:2
目的:研究脂肪胺类的新型钾通道开放剂(KCO)埃他卡林(Ipt)和氰胍类的KCO吡那地尔(Pin)对大鼠心血管ATP-敏感性钾通道(KATP)的亚基SUR1、SUR2、Kir6.1和Kir6.2等在mRNA水平的调节作用。方法:SD大鼠给药1周后处死并取组织,提取总RNA,利用反转录-聚合酶链式反应(RT-PCR)研究以上基因在mRNA水平的改变。结果:与正常对照相比,心脏组织中,Ipt和Pin对KATP的4个亚基在mRNA水平均无显著影响;主动脉平滑肌上,Ipt对4个亚基的mRNA表达无显著影响,但Pin可显著上调SUR2的mRNA表达;尾动脉平滑肌上,Ipt对Kit6.1/Kit6.2、Pin对SUR2/Kir6.1均有显著下调的作用。结论:心肌、大动脉平滑肌和小动脉平滑肌KATP基因表达的调控不同,Ipt选择性调节小动脉平滑肌Kit6.1/Kit6.2;Ipt对心血管KATP基因表达的调节作用不同于Pin。 相似文献
2.
Hashimoto T Nakamura T Maegawa H Nishio Y Egawa K Kashiwagi A 《The Journal of biological chemistry》2005,280(3):1893-1900
We have reported that the combined expression of Pdx-1 (pancreatic duodenal homeobox 1) and Isl-1 (islet 1) enables immature rat enterocytes (IEC-6) to produce and release insulin. A key component regulating the release of insulin is the ATP-sensitive potassium channel subunit Kir6.2. To investigate the regulation of Kir6.2 gene expression, we assessed Kir6.2 expression in IEC-6 cells expressing Pdx-1 and/or Isl-1. We observed that Kir6.2 protein was expressed de novo in IEC-6 cells expressing both Pdx-1 and Isl-1 but not in cells expressing Pdx-1 alone. Next, we analyzed the regions of the Kir6.2 promoter (-1677/-45) by performing a luciferase assay and electrophoretic mobility shift assay. The results have demonstrated that Kir6.2 promoter possesses two regions regulating the promoter activity: a Foxa2-binding site (-1364 to -1210) and an Sp1/Sp3-binding site (-1035 to -939). The additional expression of Isl-1 in IEC-6 cells expressing Pdx-1 attenuated overexpression of Foxa2 protein and enhanced Kir6.2 expression. Finally, knockdown of Isl-1 using the iRNA technique resulted in decreased expression of Kir6.2 protein in a rat pancreatic beta-cell line (RIN-5F cells). These results indicate that expression of Kir6.2 in the rat intestine is moderated by Isl-1. 相似文献
3.
4.
Cardiac mitochondrial ATP-sensitive potassium channel is activated by nitric oxide in vitro 总被引:1,自引:0,他引:1
Previous observations on the activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) by nitric oxide (NO) in myocardial preconditioning were based on indirect evidence. In this study, we have investigated the direct effect of NO on the rat cardiac mitoK(ATP) after reconstitution of the inner mitochondrial membranes into lipid bilayers. We found that the mitoK(ATP) was activated by exogenous NO donor S-nitroso-N-acetyl penicillamine or PAPA NONOate. This activation was inhibited by mitoK(ATP) blockers 5-hydroxydecanoate or glibenclamide. Our observations confirm that NO can directly activate the cardiac mitoK(ATP), which may underlie its contribution to myocardial preconditioning. 相似文献
5.
Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells 总被引:11,自引:0,他引:11
ATP-sensitive potassium (K(ATP)) channels regulate insulin secretion, vascular tone, heart rate and neuronal excitability by responding to transmitters as well as the internal metabolic state. K(ATP) channels are composed of four pore-forming alpha-subunits (Kir6.2) and four regulatory beta-subunits, the sulfonylurea receptor (SUR1, SUR2A or SUR2B). Whereas protein kinase A (PKA) phosphorylation of serine 372 of Kir6.2 has been shown biochemically by others, we found that the phosphorylation of T224 rather than S372 of Kir6.2 underlies the catalytic subunits of PKA (c-PKA)- and the D1 dopamine receptor-mediated stimulation of K(ATP) channels expressed in HEK293 cells. Specific changes in the kinetic properties of channels treated with c-PKA, as revealed by single-channel analysis, were mimicked by aspartate substitution of T224. The T224D mutation also reduced the sensitivity to ATP inhibition. Alteration of channel gating and a decrease in the apparent affinity for ATP inhibition thus underlie the positive regulation of K(ATP) channels by PKA phosphorylation of T224 in Kir6.2, which may represent a general mechanism for K(ATP) channel regulation in different tissues. 相似文献
6.
7.
ATP-sensitive potassium (KATP) channels couple cellular metabolic status to changes in membrane electrical properties. Caffeine (1,2,7-trimethylxanthine) has been shown to inhibit several ion channels; however, how caffeine regulates KATP channels was not well understood. By performing single-channel recordings in the cell-attached configuration, we found that bath application of caffeine significantly enhanced the currents of Kir6.2/SUR1 channels, a neuronal/pancreatic KATP channel isoform, expressed in transfected human embryonic kidney (HEK)293 cells in a concentration-dependent manner. Application of nonselective and selective phosphodiesterase (PDE) inhibitors led to significant enhancement of Kir6.2/SUR1 channel currents. Moreover, the stimulatory action of caffeine was significantly attenuated by KT5823, a specific PKG inhibitor, and, to a weaker extent, by BAPTA/AM, a membrane-permeable Ca2+ chelator, but not by H-89, a selective PKA inhibitor. Furthermore, the stimulatory effect was completely abrogated when KT5823 and BAPTA/AM were co-applied with caffeine. In contrast, the activity of Kir6.2/SUR1 channels was decreased rather than increased by caffeine in cell-free inside-out patches, while tetrameric Kir6.2LRKR368/369/370/371AAAA channels were suppressed regardless of patch configurations. Caffeine also enhanced the single-channel currents of recombinant Kir6.2/SUR2B channels, a nonvascular smooth muscle KATP channel isoform, although the increase was smaller. Moreover, bidirectional effects of caffeine were reproduced on the KATP channel present in the Cambridge rat insulinoma G1 (CRI-G1) cell line. Taken together, our data suggest that caffeine exerts dual regulation on the function of KATP channels: an inhibitory regulation that acts directly on Kir6.2 or some closely associated regulatory protein(s), and a sulfonylurea receptor (SUR)-dependent stimulatory regulation that requires cGMP-PKG and intracellular Ca2+-dependent signaling. phosphodiesterase; protein kinase; calcium; single channel; patch clamp 相似文献
8.
Marinovic J Ljubkovic M Stadnicka A Bosnjak ZJ Bienengraeber M 《American journal of physiology. Heart and circulatory physiology》2008,294(3):H1317-H1325
From time of their discovery, sarcolemmal ATP-sensitive K+ (sarcK ATP) channels were thought to have an important protective role in the heart during stress whereby channel opening protects the heart from stress-induced Ca2+ overload and resulting damage. In contrast, some recent studies indicate that sarcK ATP channel closing can lead to cardiac protection. Also, the role of the sarcK ATP channel in apoptotic cell death is unclear. In the present study, the effects of channel inhibition on apoptosis and the specific interaction between the sarcK ATP channel and mitochondria were investigated. Apoptotic cell death of cultured HL-1 and neonatal cardiomyocytes following exposure to oxidative stress was significantly increased in the presence of sarcK ATP channel inhibitor HMR-1098 as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and caspase-3,7 assays. This was paralleled by an increased release of cytochrome c from mitochondria to cytosol, suggesting activation of the mitochondrial death pathway. sarcK ATP channel inhibition during stress had no effect on Bcl-2, Bad, and phospho-Bad, indicating that the increase in apoptosis cannot be attributed to these modulators of the apoptotic pathway. However, monitoring of mitochondrial Ca2+ with rhod-2 fluorescent indicator revealed that mitochondrial Ca2+ accumulation during stress is potentiated in the presence of HMR-1098. In conclusion, this study provides novel evidence that opening of sarcK ATP channels, through a specific Ca2+-related interaction with mitochondria, plays an important role in preventing cardiomyocyte apoptosis and mitochondrial damage during stress. 相似文献
9.
The mitochondrial ATP-sensitive potassium channel (mK(ATP)) is important in cardioprotection, although the channel remains molecularly undefined. Several studies have demonstrated that mitochondrial complex II inhibitors activate the mK(ATP), suggesting a potential role for complex II in channel composition or regulation. However, these inhibitors activate mK(ATP) at concentrations which do not affect bulk complex II activity. Using the potent complex II inhibitor Atpenin A5, this relationship was investigated using tight-binding inhibitor theory, to demonstrate that only 0.4 % of total complex II molecules are necessary to activate the mK(ATP). These results estimate the mK(ATP) content at 15 channels per mitochondrion. 相似文献
10.
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane. 相似文献
11.
Jiang MT Ljubkovic M Nakae Y Shi Y Kwok WM Stowe DF Bosnjak ZJ 《American journal of physiology. Heart and circulatory physiology》2006,290(5):H1770-H1776
Activation of the mitochondrial ATP-sensitive K+ channel (mitoKATP) and its regulation by PKC are critical events in preconditioning induced by ischemia or pharmaceutical agents in animals and humans. The properties of the human cardiac mitoKATP channel are unknown. Furthermore, there is no evidence that cytosolic PKC can directly regulate the mitoKATP channel located in the inner mitochondrial membrane (IMM) due to the physical barrier of the outer mitochondrial membrane. In the present study, we characterized the human cardiac mitoKATP channel and its potential regulation by PKC associated with the IMM. IMM fractions isolated from human left ventricles were fused into lipid bilayers in symmetrical potassium glutamate (150 mM). The conductance of native mitoKATP channels was usually below 80 pS ( approximately 70%), which was reduced by ATP and 5-hydroxydecanoic acid (5-HD) in a dose- and time-dependent manner. The native mitoKATP channel is activated by diazoxide and inhibited by ATP and 5-HD. The PKC activator phorbol 12-myristate 13-acetate (2 microM) increased the cumulative open probability of the mitoKATP channel previously inhibited by ATP (P < 0.05), but its inactive analog 4alpha-phorbol 12,13-didecanoate had no effect. Western blot analysis detected an inward rectifying K+ channel (Kir6.2) immunoreactive protein at 56 kDa and PKC-delta in the IMM. These data provide the first characterization of the human cardiac mitoKATP channel and its regulation by PKC(s) in IMM. This local PKC control mechanism may represent an alternative pathway to that proposed previously for cytosolic PKC during ischemic/pharmacological preconditioning. 相似文献
12.
Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts 总被引:1,自引:0,他引:1
Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning. 相似文献
13.
《Channels (Austin, Tex.)》2013,7(4):376-382
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism. 相似文献
14.
The influence of activator of ATP-sensitive potassium channels (KATP) pinacidil and blocker glibenclamide after intermittent hypoxia in rats under stress condition on ADP-stimulated mitochondrial respiration by Chance and lipid peroxidation processes in liver have been investigated. We used next substrates of oxidation--0.35 mM succinate, 1 mM alpha-ketoglutarate, 3 mM glutamate, 3 mM pyruvate, 2.5 mM malate and inhibitor of the mitochondrial fermentative complex I (10 microM rotenone), succinate dehydrogenase inhibitor (2 mM malonate) and inhibitor of transamination (1 mM aminooxiacetate). We suggest that adaptation by intermittent hypoxia and application of a KATP opener pinacidil possess significant protective effect on mitochondrial energy support under stress condition. Combination of intermittent hypoxia with pinacidil causes more efficient consumption of oxygen and decrease of lipid peroxidation processes comparative to intermittent hypoxia or pinacidil injection used separately. We conclude about the existence of the functional link between nitric oxide which is being increased under intermittent hypoxia and KATP opener. Both intermittent hypoxia and pinacidil effectively decrease the negative results of mitochondrial dysfunction under stress condition. 相似文献
15.
Qing Zhou Pei-Chun Chen Prasanna K Devaraneni Gregory M Martin Erik M Olson Show-Ling Shyng 《Channels (Austin, Tex.)》2014,8(4):376-382
In pancreatic β-cells, KATP channels consisting of Kir6.2 and SUR1 couple cell metabolism to membrane excitability and regulate insulin secretion. Sulfonylureas, insulin secretagogues used to treat type II diabetes, inhibit KATP channel activity primarily by abolishing the stimulatory effect of MgADP endowed by SUR1. In addition, sulfonylureas have been shown to function as pharmacological chaperones to correct channel biogenesis and trafficking defects. Recently, we reported that carbamazepine, an anticonvulsant known to inhibit voltage-gated sodium channels, has profound effects on KATP channels. Like sulfonylureas, carbamazepine corrects trafficking defects in channels bearing mutations in the first transmembrane domain of SUR1. Moreover, carbamazepine inhibits the activity of KATP channels such that rescued mutant channels are unable to open when the intracellular ATP/ADP ratio is lowered by metabolic inhibition. Here, we investigated the mechanism by which carbamazepine inhibits KATP channel activity. We show that carbamazepine specifically blocks channel response to MgADP. This gating effect resembles that of sulfonylureas. Our results reveal striking similarities between carbamazepine and sulfonylureas in their effects on KATP channel biogenesis and gating and suggest that the 2 classes of drugs may act via a converging mechanism. 相似文献
16.
Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. 总被引:33,自引:0,他引:33
R Bajgar S Seetharaman A J Kowaltowski K D Garlid P Paucek 《The Journal of biological chemistry》2001,276(36):33369-33374
Protection of heart against ischemia-reperfusion injury by ischemic preconditioning and K(ATP) channel openers is known to involve the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Brain is also protected by ischemic preconditioning and K(ATP) channel openers, and it has been suggested that mitoK(ATP) may also play a key role in brain protection. However, it is not known whether mitoK(ATP) exists in brain mitochondria, and, if so, whether its properties are similar to or different from those of heart mitoK(ATP). We report partial purification and reconstitution of a new mitoK(ATP) from rat brain mitochondria. We measured K(+) flux in proteoliposomes and found that brain mitoK(ATP) is regulated by the same ligands as those that regulate mitoK(ATP) from heart and liver. We also examined the effects of opening and closing mitoK(ATP) on brain mitochondrial respiration, and we estimated the amount of mitoK(ATP) by means of green fluorescence probe BODIPY-FL-glyburide labeling of the sulfonylurea receptor of mitoK(ATP) from brain and liver. Three independent methods indicate that brain mitochondria contain six to seven times more mitoK(ATP) per milligram of mitochondrial protein than liver or heart. 相似文献
17.
18.
Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased. 相似文献
19.
ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C 总被引:10,自引:0,他引:10
ATP-sensitive potassium (K(ATP)) channels activate under metabolic stress to protect neurons and cardiac myocytes. However, excessive channel activation may cause arrhythmia in the heart and silence neurons in the brain. Here, we report that PKC-mediated downregulation of K(ATP) channel number, via dynamin-dependent channel internalization, can act as a brake mechanism to control K(ATP) activation. A dileucine motif in the pore-lining Kir6.2 subunit of K(ATP), but not the site of PKC phosphorylation for channel activation, is essential for PKC downregulation. Whereas K(ATP) activation results in a rapid shortening of the action potential duration (APD) in metabolically inhibited ventricular myocytes, adenosine receptor stimulation and consequent PKC-mediated K(ATP) channel internalization can act as a brake to lessen this APD shortening. Likewise, in hippocampal CA1 neurons under metabolic stress, PKC-mediated, dynamin-dependent K(ATP) channel internalization can also act as a brake to dampen the rapid decline of excitability due to K(ATP) activation. 相似文献
20.
Kicinska A Swida A Bednarczyk P Koszela-Piotrowska I Choma K Dolowy K Szewczyk A Jarmuszkiewicz W 《The Journal of biological chemistry》2007,282(24):17433-17441
We describe the existence of a potassium ion transport mechanism in the mitochondrial inner membrane of a lower eukaryotic organism, Acanthamoeba castellanii. We found that substances known to modulate potassium channel activity influenced the bioenergetics of A. castellanii mitochondria. In isolated mitochondria, the rate of resting respiration is increased by about 10% in response to potassium channel openers, i.e. diazoxide and BMS-191095, during succinate-, malate-, or NADH-sustained respiration. This effect is strictly dependent on the presence of potassium ions in an incubation medium and is reversed by glibenclamide (a potassium channel blocker). Diazoxide and BMS-191095 also caused a slight but statistically significant depolarization of mitochondrial membrane potential (measured with a TPP(+)-specific electrode), regardless of the respiratory substrate used. The resulting steady state value of membrane potential was restored after treatment with glibenclamide or 1 mM ATP. Additionally, the electrophysiological properties of potassium channels present in the A. castellanii inner mitochondrial membrane are described in the reconstituted system, using black lipid membranes. Conductance from 90 +/- 7 to 166 +/- 10 picosiemens, inhibition by 1 mM ATP/Mg(2+) or glibenclamide, and activation by diazoxide were observed. These results suggest that an ATP-sensitive potassium channel similar to that of mammalian mitochondria is present in A. castellanii mitochondria. 相似文献