首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca2+-uptake accompanied with mitochondrial permeability transition pore (MPTP) opening is studied in rat liver mitochondria. In conditions of MPTP opening, as well as in conditions of MPTP blockage by cyclosporine A (CsA), Ca2+-uptake in mitochondria is counterbalanced by proton efflux into incubation medium. Independent of MPTP opening, observed stoichiometry of this exchange is 1Ca2+ : 1H+. MPTP opening dramatically decreases Ca2+-uptake in mitochondria: from approximately 400 nmol/mg protein in the presence of CsA to approximately 80-100 nmol/mg protein due to the increased mitochondrial membrane permeability. In the absence of CsA Ca2+-uptake is accompanied by the insensitive to Ca2+-uniporter blocker, ruthenium red (RR), release of Ca2+ from mitochondria which corresponds to as well RR-insensitive, but sensitive to CsA uptake of H+ into mitochondrial matrix. This calcium-proton exchange resulting from MPTP opening is observed only when Ca2+ uptake into matrix exceeds some basal level. The data are consistent with an assumption that, contrary to Ca2+-uniporter, MPTP has its own proton conductance. MPTP opening provides exchange of Ca2+ between mitochondria and medium which is coupled to the counterflow of protons into matrix space. Obtained data elucidate the physiological role of MPTP as regulatory mechanism for control of Ca2+-uptake level and intramitochondrial pH.  相似文献   

2.
The release of divalent cations (Ca2+ and Sr2+) from rat liver mitochondria after membrane depolarization with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), sodium azide and K(+)-ionophore (valinomycin) was studied. It is stated that membrane depolarization itself is not sufficient for cations release from mitochondrial matrix (provided that mitochondrial permeability transition pore is blocked by cyclosporin A). Complete delivering of divalent cations is observed only after protonophore (CCCP) addition to suspension of deenergized mitochondria. The data show that membrane permeabilisation to hydrogen ions (H+) is necessary for complete cation release from the mitochondrial matrix. The enhancement in K(+)-conductivity of mitochondrial membrane (by valinomycin), on the contrary, is not able to provide complete delivering of cations from mitochondria. It is shown that quantity of divalent metal cation released from mitochondria (depolarized and permeabilized for K+ as well) is proportional to the concentration of protonophore (but not K(+)-ionophore) introduced in the incubation medium. The data obtained lead to the conclusion that H(+)-permeabilization of the mitochondrial membrane is necessary for the complete release of Ca2+ and Sr2+ from mitochondria after membrane depolarization. The possible mechanism of divalent metal cations release from deenergized mitochondria is discussed.  相似文献   

3.
The survey is aimed to review the data from literature, concerning possible mechanisms of Ca2+ and H+ transport through the plasma membrane of a cells, and also possibility of existence of Ca2+/H(+)-exchange in the plasma membrane of the muscle cells. It is known that the modification of pHl (delta pH) also can influence the work of the contractile system of muscle cells, and the transition of Ca2+ through the plasma membrane of the cells. Thus, one can suppose a direct relation between Ca2+ and H+ transport, through Ca2+/H+ exchange, and indirect relation through connection with other systems of transport of both Ca2+ (Ca(2+)-ATPase, Na+/Ca2+ exchange), and H+ (Na+/H(+)-exchange, H(+)-ATPase). For example it is shown, that the activator (inhibitor) of the Na+/H(+)-exchange through the plasma membrane of muscle cells, influence the work of the retractive system. And as is known, Ca2+ takes main part in involvement in the system excitation--contraction, and, thus, influencing the work of the Na+/H(+)-exchange, it is possible to regulate transport of Ca2+ through the plasma membrane of a muscle cell. The problem about a possibility of existence of Ca2+/H+ exchange, or functioning of Ca2+/H(+)-exchanger, is still far from the solution. Therefore, in the given review the attempt is made to analyze available information about possible connection between Ca2+ and H+ transport through the plasma cell membrane.  相似文献   

4.
We investigated the role of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel, the mitochondrial big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, and the mitochondrial permeability transition pore (MPTP) in the ouabain-induced increase of mitochondrial Ca(2+) in native rat ventricular myocytes by loading cells with rhod 2-AM. To overload mitochondrial Ca(2+), we pretreated cells with ouabain before applying mitochondrial K(ATP) or BK(Ca) channel and/or MPTP opener. Ouabain (1 mM) increased the rhod 2-sensitive fluorescence intensity (160 +/- 5.0% of control), which was dramatically decreased to the control level on application of diazoxide and NS-1619 in a dose-dependent manner (half-inhibition concentrations of 78.3 and 7.78 muM for diazoxide and NS-1619, respectively). This effect was reversed by selective inhibition of the mitochondrial K(ATP) channel by 5-hydroxydecanoate, the mitochondrial BK(Ca) channel by paxilline, and the MPTP by cyclosporin A. Although diazoxide did not efficiently reduce mitochondrial Ca(2+) during prolonged exposure to ouabain, NS-1619 reduced mitochondrial Ca(2+). These results suggest that although mitochondrial BK(Ca) and K(ATP) channels contribute to reduction of ouabain-induced mitochondrial Ca(2+) overload, activation of the mitochondrial BK(Ca) channel more efficiently reduces ouabain-induced mitochondrial Ca(2+) overload in our experimental model.  相似文献   

5.
Ethanol stimulates the Na(+)-dependent Ca2+ efflux in brain mitochondria and inhibits the Na(+)-independent Ca(2+)-efflux. Here, we studied the effects of n-alkanols on the various Ca2+ transport processes in brain mitochondria. Only short-chain alcohols (i.e. methanol, ethanol and propanol) stimulated Na+/Ca2+ exchange. The inhibition of H+/Ca2+ exchange was significant only with ethanol. Short-chain alcohols inhibit while long-chain alcohols activate the cyclosporin-sensitive Ca(2+)-efflux. These data suggest that the mechanism of the alkanols' effects on Na+/Ca2+ exchange, H+/Ca2+ exchange and the cyclosporin sensitive pore are entirely different. Alkanols have no effect on the electrogenic Ca2+ uniporter. Ethanol did not affect the apparent K0.5 for Na+ (7.5 mM) of the Na+/Ca2+ exchange. Similarly, the magnitude of the effect of ethanol did not depend on matrix Ca2+ concentration, suggesting that short-chain alkanols do not stimulate the rate of Na+/Ca2+ exchange by increasing the affinity of the carrier to Ca2+in or Na+out. High concentrations of K+, Mg2+ and Ca2+ enhanced the ethanol effect. It is possible that high surface potential attenuates the effect of ethanol. It is suggested that ethanol stimulation of Na+/Ca2+ exchange depends on the modulation of the surface dielectric constant.  相似文献   

6.
Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca(2+) load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+)-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+) load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.  相似文献   

7.
Ca2+ accumulation in energized rat liver mitochondria has been studied after the blockage of mitochondrial permeability transition pore (MPTP) by cyclosporin A. It is shown that Ca2+ transport is coupled to the countertransport of protons: from the matrix of mitochondria in the medium in the course of Ca2+ accumulation, and, on the contrary, from the medium to mitochondrial matrix after membrane depolarization. In standard incubation medium containing K+, Cl-, oxidation substrate (glutamate) and inorganic phosphate (H2PO4(-)) the observed stoichiometry of the exchange is 1Ca2+ : 1H+. In accordance with this exchange ratio, proton, as well as cation, transport follows the same first-order kinetics, which is characterized in both cases by very close values of reaction half-times and rate constants. It is shown that reversion of Ca2+ -uniporter, sensitive to ruthenium red, is necessary for Ca2+ - efflux from the matrix ofdeenergized mitochondria when MPTP is blocked by cyclosporin A. It is also shown that Ca2+ -uniporter reversion takes place only after membrane depolarization and permeabilization by protonophore CCCP. Calcium release from mitochondria in the presence of CCCP is accompanied by proton flow into the matrix. Both calcium and proton fluxes are sensitive to Ca2+ uniporter blocker, ruthenium red, which gives the evidence of the identity of Ca2+ -efflux and influx pathways. The data obtained lead to the conclusion that calcium-proton exchange is necessary for Ca2+ -uniporter reversion and the reversibility of energy-dependent Ca2+ -uptake in mitochondria.  相似文献   

8.
With the aid of specific inhibitors of Ca(2+)-uniporter (ruthenium red) and mitochondrial permeability transition pore, PTP (cyclosporine A) it is shown that PTP opening takes place after loading the rat liver mitochondria with calcium and depolarisation of mitochondrial membrane with protonophore (carbonyl cyanide m-chlorophenyl hydrazone, CCCP), and the pore opening accounts for accelerated efflux of calcium from mitochondrial matrix as well as availability of "rapid" component of two-exponential kinetic curve of Ca(2+)-efflux. An analysis of kinetic data of Ca2+ transport after membrane depolarisation also confirms our earlier observations that time frame of the pore open state is restricted, and membrane integrity is restored before all the calcium load is delivered into incubation medium. The absence of additivity between the shares of Ca(2+)-uniporter and PTP in Ca(2+)-transport is observed, and conclusion is made that partial share of PTP in calcium transport is not a constant, but a variable constituent which is diminished to zero as soon as the Ca(2+)-uniporter activity reaches its maximum after the abolition of membrane potential with CCCP. Based on some observations, it is supposed also that PTP inactivation takes place during calcium translocation across the mitochondrial membrane, which could account for limited release of Ca2+ from mitochondrial matrix through the pore itself as well as relatively narrow limits of the pore open state in comparison with time scale of complete cation release from depolarised mitochondria.  相似文献   

9.
10.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

11.
The changes in mitochondrial membrane potential (Deltapsi(m)) were used as an indicator for evaluating the mitochondrial permeability transition pore (MPTP) function. We found that in situ mitochondria in digitonin-permeabilized hepatocytes were coupled and responded to the addition of substrates, inhibitors and uncouplers. Ca(2+)-induced Deltapsi(m) dissipation was caused by MPTP opening because this process was inhibited by cyclosporin A. MPTP opening was enhanced by the pro-oxidant tert-butyl hydroperoxide.  相似文献   

12.
There is an emerging consensus that pharmacological opening of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel protects the heart against ischemia-reperfusion damage; however, there are widely divergent views on the effects of openers on isolated heart mitochondria. We have examined the effects of diazoxide and pinacidil on the bioenergetic properties of rat heart mitochondria. As expected of hydrophobic compounds, these drugs have toxic, as well as pharmacological, effects on mitochondria. Both drugs inhibit respiration and increase membrane proton permeability as a function of concentration, causing a decrease in mitochondrial membrane potential and a consequent decrease in Ca(2+) uptake, but these effects are not caused by opening mitochondrial K(ATP) channels. In pharmacological doses (<50 microM), both drugs open mitochondrial K(ATP) channels, and resulting changes in membrane potential and respiration are minimal. The increased K(+) influx associated with mitochondrial K(ATP) channel opening is approximately 30 nmol. min(-1). mg(-1), a very low rate that will depolarize by only 1-2 mV. However, this increase in K(+) influx causes a significant increase in matrix volume. The volume increase is sufficient to reverse matrix contraction caused by oxidative phosphorylation and can be observed even when respiration is inhibited and the membrane potential is supported by ATP hydrolysis, conditions expected during ischemia. Thus opening mitochondrial K(ATP) channels has little direct effect on respiration, membrane potential, or Ca(2+) uptake but has important effects on matrix and intermembrane space volumes.  相似文献   

13.
Massive Ca(2+) accumulation in mitochondria, plus the stimulating effect of an inducing agent, i.e., oxidative stress, induces the so-called permeability transition, which is characterized by the opening of a nonspecific pore. This work was aimed at studying the influence of thyroid hormone on the opening of such a nonspecific pore in kidney mitochondria, as induced by an oxidative stress. To meet this objective, membrane permeability transition was examined in mitochondria isolated from kidney of euthyroid and hypothyroid rats, after a period of ischemia/reperfusion. It was found that mitochondria from hypothyroid rats were able to retain accumulated Ca(2+) to sustain a transmembrane potential after Ca(2+) addition, as well as to maintain matrix NAD(+) and membrane cytochrome c content. The protective effect of hypothyroidism was clearly opposed to that occurring in ischemic reperfused mitochondria from euthyroid rats. Our findings demonstrate that these mitochondria were unable to preserve selective membrane permeability, except when cyclosporin A was added. It is proposed that the protection is conferred by the low content of cardiolipin found in the inner membrane. This phospholipid is required to switch adenine nucleotide translocase from specific carrier to a non-specific pore.  相似文献   

14.
Inhibition of Na(+)/H(+) exchanger 1 (NHE1) reduces cardiac ischemia-reperfusion (I/R) injury and also cardiac hypertrophy and failure. Although the mechanisms underlying these NHE1-mediated effects suggest delay of mitochondrial permeability transition pore (MPTP) opening, and reduction of mitochondrial-derived superoxide production, the possibility of NHE1 blockade targeting mitochondria has been incompletely explored. A short-hairpin RNA sequence mediating specific knock down of NHE1 expression was incorporated into a lentiviral vector (shRNA-NHE1) and transduced in the rat myocardium. NHE1 expression of mitochondrial lysates revealed that shRNA-NHE1 transductions reduced mitochondrial NHE1 (mNHE1) by ~60%, supporting the expression of NHE1 in mitochondria membranes. Electron microscopy studies corroborate the presence of NHE1 in heart mitochondria. Immunostaining of rat cardiomyocytes also suggests colocalization of NHE1 with the mitochondrial marker cytochrome c oxidase. To examine the functional role of mNHE1, mitochondrial suspensions were exposed to increasing concentrations of CaCl(2) to induce MPTP opening and consequently mitochondrial swelling. shRNA-NHE1 transduction reduced CaCl(2)-induced mitochondrial swelling by 64 ± 4%. Whereas the NHE1 inhibitor HOE-642 (10 μM) decreased mitochondrial Ca(2+)-induced swelling in rats transduced with nonsilencing RNAi (37 ± 6%), no additional HOE-642 effects were detected in mitochondria from rats transduced with shRNA-NHE1. We have characterized the expression and function of NHE1 in rat heart mitochondria. Because mitochondria from rats injected with shRNA-NHE1 present a high threshold for MPTP formation, the beneficial effects of NHE1 inhibition in I/R resulting from mitochondrial targeting should be considered.  相似文献   

15.
An exposure of cultured hippocampal neurons expressing mitochondrially targeted enhanced yellow fluorescent protein to excitotoxic glutamate resulted in reversible mitochondrial remodeling that in many instances could be interpreted as swelling. Remodeling was not evident if glutamate receptors were blocked with MK801, if Ca(2+) was omitted or substituted for Sr(2+) in the bath solution, if neurons were treated with carbonylcyanide p-trifluoromethoxyphenylhydrazone to depolarize mitochondria, or if neurons were pretreated with cyclosporin A or N-methyl-4-isoleucine-cyclosporin (NIM811) to inhibit the mitochondrial permeability transition. In the experiments with isolated brain synaptic or nonsynaptic mitochondria, Ca(2+) triggered transient, spontaneously reversible cyclosporin A-sensitive swelling closely resembling remodeling of organelles in cultured neurons. The swelling was accompanied by the release of cytochrome c, Smac/DIABLO, Omi/HtrA2, and AIF but not endonuclease G. Depolarization with carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the Ca(2+) uniporter with Ru360 prevented rapid onset of the swelling. Sr(2+) depolarized mitochondria but failed to induce swelling. Neither inhibitors of the large conductance Ca(2+)-activated K(+) channel (charybdotoxin, iberiotoxin, quinine, and Ba(2+)) nor inhibitors of the mitochondrial ATP-sensitive K(+) channel (5-hydroxydecanoate and glibenclamide) suppressed swelling. Quinine, dicyclohexylcarbodiimide, and Mg(2+), inhibitors of the mitochondrial K(+)/H(+) exchanger, as well as external alkalization inhibited a recovery phase of the reversible swelling. In contrast to brain mitochondria, liver and heart mitochondria challenged with Ca(2+) experienced sustained swelling without spontaneous recovery. The proposed model suggests an involvement of the Ca(2+)-dependent transient K(+) influx into the matrix causing mitochondrial swelling followed by activation of the K(+)/H(+) exchanger leading to spontaneous mitochondrial contraction both in situ and in vitro.  相似文献   

16.
Release of cytochrome c from mitochondria is a key initiative step in the apoptotic process, although the mechanisms regulating this event remain elusive. In the present study, using isolated liver mitochondria, we demonstrate that cytochrome c release occurs via distinct mechanisms that are either Ca(2+)-dependent or Ca(2+)-independent. An increase in mitochondrial matrix Ca(2+) promotes the opening of the permeability transition (PT) pore and the release of cytochrome c, an effect that is significantly enhanced when these organelles are incubated in a reaction buffer that is based on a physiologically relevant concentration of K(+) (150 mm KCl) versus a buffer composed of mannitol/sucrose/Hepes. Moreover, low concentrations of Ca(2+) are sufficient to induce mitochondrial cytochrome c release without measurable manifestations of PT, though inhibitors of PT effectively prevent this release, indicating that the critical threshold for PT varies among mitochondria within a single population of these organelles. In contrast, Ca(2+)-independent cytochrome c release is induced by oligomeric Bax protein and occurs without mitochondrial swelling or the release of matrix proteins, although our data also indicate that Bax enhances permeability transition-induced cytochrome c release. Taken together, our results suggest that the intramitochondrial Ca(2+) concentration, as well as the reaction buffer composition, are key factors in determining the mode and amount of cytochrome c release. Finally, oligomeric Bax appears to be capable of stimulating cytochrome c release via both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

17.
Sustained oscillations of transmembrane fluxes of Ca2+ and other ions in isolated mitochondria are described. The data are presented that the major cause of the oscillations is the Ca2+-induced Ca2+ efflux from the mitochondrial matrix and spontaneous opening/closing of the permeability transition pore in the inner mitochondrial membrane. Conditions favourable for the generation of oscillations are considered. The role of phospholipid peroxidation and hydrolysis in the generation of [Ca2+] oscillations is emphasized. Literature data concerning [Ca2+] changes in the mitochondrial matrix in intact cells and the data on the participation of mitochondria in intracellular Ca2+ oscillation and in the Ca2+ wave propagation are reviewed. The hypothesis that mitochondria are able to generate [Ca2+] oscillations in intact cells is put forward. It is assumed that Ca2+ oscillations can protect mitochondria of resting cells from osmotic shock and oxidative stress.  相似文献   

18.
The effects of tetrandrine (6,6', 7,12-tetramethoxy-2, 2'-dimethyl-berbaman) on the mitochondrial function were assessed on oxidative stress, mitochondrial permeability transition (MPT), and bioenergetics of rat liver mitochondria. At concentrations lower than 100nmol/mg protein, tetrandrine decreased the hydrogen peroxide formation, the extent of lipid peroxidation, the susceptibility to Ca(2+)-induced opening of MPT pore, and inhibited the inner membrane anion channel activity, not significantly affecting the mitochondrial bioenergetics. High tetrandrine concentrations (100-300nmol/mg protein) stimulated succinate-dependent state 4 respiration, while some inhibition was observed for state 3 and p-trifluoromethoxyphenylhydrazone-uncoupled respirations. The respiratory control ratio and the transmembrane potential were depressed but the adenosine diphosphate to oxygen (ADP/O) ratio was less affected. A slight increase of the inner mitochondrial membrane permeability to H(+) and K(+) by tetrandrine was also observed. It was concluded that low concentrations of tetrandrine afford protection against liver mitochondria injury promoted by oxidative-stress events, such as hydrogen peroxide production, lipid peroxidation, and induction of MPT. Conversely, high tetrandrine concentrations revealed toxicological effects expressed by interference with mitochondrial bioenergetics, as a consequence of some inner membrane permeability to H(+) and K(+) and inhibition of the electron flux in the respiratory chain. The direct immediate protective role of tetrandrine against mitochondrial oxidative stress may be relevant to clarify the mechanisms responsible for its multiple pharmacological actions.  相似文献   

19.
Studies of swelling of rat liver mitochondria in isoosmotic solutions of nonelectrolytes in the presence of respiration inhibitors revealed that submicromolar concentrations of Ca2+ increase the diameter of pores in the inner mitochondrial membrane--from 5.5-6.0 A (10(-8) M Ca2+) up to 7.5 A (3 x 10(-7) M Ca2+) and 8.0-8.5 A (6 x 10(-7) M Ca2+); these increases are prevented by cyclosporin A. The inner mitochondrial membrane with an effective pore diameter of 7.5 A is readily permeable for potassium but not for sodium ions, although with an increase in the effective pore diameter up to 8.0-8.5 A the selectivity of the K(+)-Na+ channel decreases. A conclusion is drawn that in the presence of submicromolar concentrations of Ca2+ the conductivity of the cyclosporin-sensitive pore for monovalent cations increases in the following order: K > Na > Li.  相似文献   

20.
In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号