共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation. 相似文献
3.
《Bioorganic & medicinal chemistry》2014,22(7):2353-2365
The inhibition of protein–protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein. 相似文献
4.
Clarke TR Hoshiya Y Yi SE Liu X Lyons KM Donahoe PK 《Molecular endocrinology (Baltimore, Md.)》2001,15(6):946-959
Signal reception of Müllerian inhibiting substance (MIS) in the mesenchyme around the embryonic Müllerian duct in the male is essential for regression of the duct. Deficiency of MIS or of the MIS type II receptor, MISRII, results in abnormal reproductive development in the male due to the maintenance of the duct. MIS is a member of the transforming growth factor-beta (TGFbeta) superfamily of secreted protein hormones that signal through receptor complexes of type I and type II serine/threonine kinase receptors. To investigate candidate MIS type I receptors, we examined reporter construct activation by MIS. The bone morphogenetic protein (BMP)-responsive Tlx2 and Xvent2 promoter-driven reporter constructs were stimulated by MIS but the TGFbeta/activin-induced p3TP-lux or CAGA-luc reporter constructs were not. The induction of Tlx2-luc was dependent upon the kinase activity of MISRII and was blocked by a dominant negative truncated ALK2 (tALK2) receptor but not by truncated forms of the other BMP type I receptors ALK1, ALK3, or ALK6. MIS induced activation of a Gal4DBD-Smad1 but not a Gal4DBD-Smad2 fusion protein. This activation could also be blocked by tALK2. The BMP-induced inhibitory Smad, Smad6, was up-regulated by MIS endogenously in Leydig cell-derived lines and is expressed in male but not female Müllerian duct mesenchyme. ALK6 has been shown to function as an MIS type I receptor. Investigation of the pattern of ALK2, MISRII, and ALK6 in the developing urogenital system demonstrated overlapping expression of ALK2 and MISRII in the mesenchyme surrounding the duct while ALK6 was observed only in the epithelium. Examination of ALK6 -/- male animals revealed no defect in duct regression. The reporter construct analysis, pattern of expression of the receptors, and analysis of ALK6-deficient animals suggest that ALK2 is the MIS type I receptor involved in Müllerian duct regression. 相似文献
5.
Scudiero I Zotti T Ferravante A Vessichelli M Reale C Masone MC Leonardi A Vito P Stilo R 《The Journal of biological chemistry》2012,287(8):6053-6061
The pro-inflammatory cytokine tumor necrosis factor (TNF) α signals both cell survival and death. The biological outcome of TNFα treatment is determined by the balance between survival factors and Jun NH(2)-terminal kinase (JNK) signaling, which promotes cell death. Here, we show that TRAF7, the most recently identified member of the TNF receptor-associated factors (TRAFs) family of proteins, is essential for activation of JNK following TNFα stimulation. We also show that TRAF6 and TRAF7 promote unconventional polyubiquitination of the anti-apoptotic protein c-FLIP(L) and demonstrate that degradation of c-FLIP(L) also occurs through a lysosomal pathway. RNA interference-mediated depletion of TRAF7 correlates with increased c-FLIP(L) expression level, which, in turn, results in resistance to TNFα cytotoxicity. Collectively, our results indicate an important role for TRAF7 in the activation of JNK following TNFα stimulation and clearly point to an involvement of this protein in regulating the turnover of c-FLIP and, consequently, cell death. 相似文献
6.
Thorp E Vaisar T Subramanian M Mautner L Blobel C Tabas I 《The Journal of biological chemistry》2011,286(38):33335-33344
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo. 相似文献
7.
Olsson MG Nilsson EJ Rutardóttir S Paczesny J Pallon J Akerström B 《Radiation research》2010,174(5):590-600
Alpha-particle irradiation of cells damages not only the irradiated cells but also nontargeted bystander cells. It has been proposed that the bystander effect is caused by oxidants and free radicals generated by the radiation. Recent studies have shown that α(1)-microglobulin protects against cell damage caused by oxidants and free radicals. Using a novel experimental system that allows irradiation of 0.02% of a human hepatoma monolayer, leaving 99.98% as bystander cells, we investigated the influence of oxidative stress and the cell-protective effects of α(1)-microglobulin during α-particle irradiation. The results showed an increase in cell death in both irradiated cells and bystander cells. A significant increase in apoptosis, oxidation markers and expression of the stress response genes heme oxygenase 1, superoxide dismutase, catalase, glutathione peroxidase 1, p21 and p53 were observed. Addition of α(1)-microglobulin reduced the amount of dead cells and inhibited apoptosis, formation of oxidation markers, and up-regulation of stress response genes. The results emphasize the role of oxidative stress in promoting bystander effects. Furthermore, the results suggest that α(1)-microglobulin protects nonirradiated cells by eliminating oxidants and free radicals generated by radiation and imply that α(1)-microglobulin can be used in radiation therapy of tumors to minimize damage to surrounding tissues. 相似文献
8.
Lankat-Buttgereit B Göke R 《Biology of the cell / under the auspices of the European Cell Biology Organization》2003,95(8):515-519
Pdcd4 is a novel gene first identified as a differentially expressed protein during apoptosis. In the meantime not only the impact of Pdcd4 in programmed cell death but also an implication in transformation suppression by inhibition of protein translation is discussed. These features implicate a potential value of Pdcd4 as a molecular target in cancer therapy. This review summarizes the current knowledge about expression, structure and function of Pdcd4. 相似文献
9.
10.
11.
Guo Songjia Shan Shuhua Wu Haili Hao Huiqiang Li Zhuoyu 《Molecular biology reports》2021,48(11):7059-7065
Molecular Biology Reports - Nostoc commune Vauch. is a nitrogen-fixing blue-green algae that expresses a large number of active molecules with medicinal properties. Our previous study found that a... 相似文献
12.
The global prevalence of HIV is a major challenge for the control of visceral leishmaniasis. Although the effectiveness and usefulness of amprenavir (APV) are well studied in anti-retroviral regimens, very little is known on HIV/VL-co-infected patients. In the present study, we report for the first time the protective efficacy of APV against visceral leishmaniasis by inhibition of DNA Topoisomerase I (LdTOP1LS) and APV-induced downstream pathway in programmed cell death (PCD). During the early phase of activation, reactive oxygen species (ROS) is increased inside the cells, which causes subsequent elevation of lipid peroxidation. Endogenous ROS formation and lipid peroxidation cause eventual depolarization of mitochondrial membrane potential (ΔΨm). Furthermore, the release of cytochrome c and activation of CED3/CPP32 group of proteases lead to the formation of oxidative DNA lesions followed by DNA fragmentation. The promising in vitro and ex vivo results promoted to substantiate further by in vivo animal experiment, which showed a significant reduction of splenic and hepatic parasites burden compared to infected controls. Interestingly, APV selectively targets LdTOPILS and does not inhibit the catalytic activity of human topoisomerase I (hTopI). Moreover, based on the cytotoxicity test APV is not toxic for host macrophage cells, which is correlated with non-responsiveness of inhibition of catalytic activity of hTopI. Taken together, this study provides the opportunity for discovering and evaluating newer potential molecular therapeutic targets for drug designing. The present study might be exploited in future as important therapeutics, which will be useful for treatment of VL as well as HIV-VL co-infection. 相似文献
13.
Cacalano NA Le D Paranjpe A Wang MY Fernandez A Evazyan T Park NH Jewett A 《Apoptosis : an international journal on programmed cell death》2008,13(12):1439-1449
The aim of this study is to identify potential gene and protein targets when nuclear factor kappa B (NFκB) and c-jun N-terminal
kinase (JNK) were inversely expressed in oral tumors. To determine which genes were regulated synergistically by the inverse
expression of NFκB and JNK, a pathway specific microarray analysis was performed. While either inhibition of NFκB or activation
of JNK alone was unable to affect the IGFBP6 gene expression in microarray analysis, concomitant increase in JNK activation
in the presence of NFκB inhibition increased the expression of this gene significantly. Synergistic increase in IGFBP6 gene
expression was also confirmed by RT-PCR and Northern blot analysis of transfected cells. Accordingly, the levels of IGFBP6
protein secretion rose synergistically when JNK was over-expressed in NFκB knock down cells. In addition, increased expression
of JNK in the absence of NFκB resulted in a significant induction of cell death in oral tumors when either left untreated
or treated with TNF-α and TPA. Moreover, when JNK was inhibited by dominant negative JNK (APF), a significant decrease in
cell death could be observed in TNF-α and TPA treated NFκB knock down oral tumors. Therefore, increased induction of IGFBP6
gene or protein expression in oral tumors could be regarded as a potential predictive marker of tumor sensitivity and could
be used for prognostic purposes, since a significant correlation could be observed between increased induction of apoptotic
cell death and elevated levels of IGFBP6 in these tumors. 相似文献
14.
15.
Urine protein loss in immune complex-mediated diseases such as lupus nephritis is associated with podocyte foot process effacement (podocytopathy) but is not always dependent on glomerular immune complex deposition. Several murine and human studies have associated lupus nephritis with inducible nitric oxide synthase (iNOS) expression in what appear to be podocytes. This study was conducted to determine mechanisms of immune-complex-independent and iNOS-dependent podocyte dysfunction. Conditionally immortalized podocytes were cultured with lipopolysaccharide (LPS) and nitric oxide (NO), superoxide (SO), or peroxynitrite donors in the presence or absence of inhibitors of iNOS, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or monocyte chemotactic protein 1 (MCP-1), or with sepiapterin to increase coupling of iNOS homodimers. Podocyte NO, SO, and MCP-1 production and nitrotyrosine modifications were determined. The podocytopathy phenotype was determined by measuring cell motility and membrane permeability to albumin. This study determined that NO produced by iNOS is sufficient and necessary to induce podocytopathy. NO probably induces this phenotype via hypoxia-inducible factor 1α and cell division control protein 42 and Ras-related C3 botulinum toxin substrate 1 pathways. With LPS stimulation, neither SO nor peroxynitrite produced by uncoupled iNOS or NADPH oxidase nor MCP-1 was sufficient to induce the full phenotype. This study supports the notion that iNOS may induce autocrine podocyte dysfunction. Thus, targeting iNOS or the pathways of its induction may have therapeutic benefit. 相似文献
16.
Doxorubicin, an anthracycline antibiotic, is widely used in cancer treatment. Doxorubicin produces genotoxic stress and p53 activation in both carcinoma and non-carcinoma cells. Although its side effects in non-carcinoma cells, especially in heart tissue, are well known, the molecular targets of doxorubicin are poorly characterized. Here, we report that doxorubicin inhibits AMP-activated protein kinase (AMPK) resulting in SIRT1 dysfunction and p53 accumulation. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) or H9C2 cardiomyocyte were exposed to doxorubicin at different doses and durations. Cell death and p53, SIRT1, and AMPK levels were examined by Western blot. In MEFs, doxorubicin inhibited AMPK activation, increased cell death, and induced robust p53 accumulation. Genetic deletion of AMPKα1 reduced NAD(+) levels and SIRT1 activity and significantly increased the levels of p53 and cell death. Pre-activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside or transfection with an adenovirus encoding a constitutively active AMPK (AMPK-CA) markedly reduced the effects of doxorubicin in MEFs from Ampkα1 knock-out mice. Conversely, pre-inhibition of Ampk further sensitized MEFs to doxorubicin-induced cell death. Genetic knockdown of p53 protected both wild-type and Ampkα1(-/-) MEFs from doxorubicin-induced cell death. p53 accumulation in Ampkα1(-/-) MEFs was reversed by SIRT1 activation by resveratrol. Taken together, these data suggest that AMPK inhibition by doxorubicin causes p53 accumulation and SIRT1 dysfunction in MEFs and further suggest that pharmacological activation of AMPK might alleviate the side effects of doxorubicin. 相似文献
17.
Yinhua Yang Amanda Nga-Sze Mak Pang-Chui Shaw Kong Hung Sze 《Biomolecular NMR assignments》2007,1(2):187-189
We report the full resonance assignments of MOD, which is an active mutant of maize ribosome-inactivating protein (mRIP).
mRIP is a unique RIP which is synthesized as an inactive precursor and processed by removal of an internal inactivation region
to yield an active form. 相似文献
18.
Psoriasin (S100A7) is expressed in several epithelial malignancies including breast cancer. Although S100A7 is associated with the worst prognosis in estrogen receptor α-negative (ERα(-)) invasive breast cancers, its role in ERα-positive (ERα(+)) breast cancers is relatively unknown. We investigated the significance of S100A7 in ERα(+) breast cancer cells and observed that S100A7 overexpression in ERα(+) breast cancer cells, MCF7 and T47D, exhibited decreased migration, proliferation, and wound healing. These results were confirmed in vivo in nude mouse model system. Mice injected with S100A7-overexpressing MCF7 cells showed significant reduction in tumor size compared with mice injected with vector control cells. Further mechanistic studies revealed that S100A7 mediates the tumor-suppressive effects via a coordinated regulation of the β-catenin/TCF4 pathway and an enhanced interaction of β-catenin and E-cadherin in S100A7-overexpressing ERα(+) breast cancer cells. We observed down-regulation of β-catenin, p-GSK3β, TCF4, cyclin D1, and c-myc in S100A7-overexpressing ERα(+) breast cancer cells. In addition, we observed increased expression of GSK3β. Treatment with GSK3β inhibitor CHIR 99021 increased the expression of β-catenin and its downstream target c-myc in S100A7-overexpressing cells. Tumors derived from mice injected with S100A7-overexpressing MCF7 cells also showed reduced activation of the β-catenin/TCF4 pathway. Therefore, our studies reveal for the first time that S100A7-overexpressing ERα(+) breast cancer cells exhibit tumor suppressor capabilities through down-modulation of the β-catenin/TCF4 pathway both in vitro and in vivo. Because S100A7 has been shown to enhance tumorigenicity in ERα(-) cells, our studies suggest that S100A7 may possess differential activities in ERα(+) compared with ERα(-) cells. 相似文献
19.