首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha−1 during the growing season in the Inner Mongolia steppe. Shiping Wang and He Zhou contributed equally to this work.  相似文献   

2.
This study compared the effect of supplementing maize stover (MS) with cowpea (Vigna unguiculata) haulms or commercial concentrate (CC) on feed intake, nutrient digestibility, live weight gain and carcass yield of male Ethiopian Highland sheep. Two cowpea genotypes, 12688 (forage) and IT96D-774 (dual-purpose), were used. A randomised block design was applied with groups of eight sheep, blocked by weight, allocated to one of six treatments; MS ad libitum either unsupplemented or supplemented daily with 150 or 300 g dry matter (DM) of either cowpea or CC. MS contained more neutral detergent fibre (NDF), acid detergent fibre (ADF) and lignin than either cowpeas or CC. Crude protein (CP) content of the forage-type cowpeas was higher than either dual-purpose or CC, while MS had the lowest CP content. Relative to the negative control group, cowpea at either level significantly (P < 0.01) increased both MS intake and total NDF and lignin. Supplementation significantly (P < 0.01) increased nitrogen (N) intakes relative to the negative control, with N intake for CC and dual-purpose cowpea (high level) being similar to the intakes for cowpeas at 150 g. N intake with the forage-type cowpea offered at higher levels was significantly (P < 0.01) greater than the other groups. No significant differences (P > 0.01) in MS intake were identified between cowpeas at either level or CC and, although intake level of CC increased, it did not differ significantly from the negative control group. Supplementation significantly (P < 0.01) improved average daily gain, with the negative control group losing weight over the experimental period, and increased final live weight, carcass cold weight and dressing percentage. Supplementation significantly improved the apparent digestibility of DM, organic matter and NDF, with no significant difference found between cowpeas at either level. N retention was negative for sheep offered only MS, but positive with all supplements, with cowpeas improving N retention to a greater extent than CC. Interestingly, N retention/N intake was higher with cowpeas offered at the lower level suggesting an improvement in utilisation efficiency. The results indicate that the supplementation of MS with cowpea enhanced ruminant production through improvements in digestibility and intake. Further, as production improvements associated with the two levels of supplementation did not differ significantly, it is suggested that where limited quantities of cowpea are available, it may be of greater nutritional benefit to offer smaller quantities over an increased number of animal days.  相似文献   

3.
The objective of this study was to test whether the use of tannin-rich shrub legume forage is advantageous for methane mitigation and metabolic protein supply at unchanged energy supply when supplemented in combination with tannin-free legumes to sheep. In a 6 × 6 Latin-square design, foliage of two tannin-rich shrub legume species (Calliandra calothyrsus and Flemingia macrophylla) were used to replace either 1/3 or 2/3, respectively, of a herbaceous high-quality legume (Vigna unguiculata) in a diet composed of the tropical grass Brachiaria brizantha and Vigna in a ratio of 0.55 : 0.45. A Brachiaria-only diet served as the negative control. Each experimental period lasted for 28 days, with week 3 serving for balance measurement and data collection inclusive of a 2-day stay of the sheep in open-circuit respiration chambers for measurement of gaseous exchange. While Vigna supplementation improved protein and energy utilisation, the response to the partial replacement with tannin-rich legumes was less clear. The apparent total tract digestibilities of organic matter, NDF and ADF were reduced when the tannin-rich plants partially replaced Vigna, and the dose-response relationships were mainly linear. The tannin-rich plants caused the expected redistribution of more faecal N in relation to urinary N. While Flemingia addition still led to a net body N retention, even when fed at the higher proportion, adding higher amounts of Calliandra resulted in body protein mobilisation in the growing lambs. With respect to energy, supplementation of Vigna alone improved utilisation, while this effect was absent when a tannin-rich plant was added. The inclusion of the tannin-rich plants reduced methane emission per day and per unit of feed and energy intake by up to 24% relative to the Vigna-only-supplemented diet, but this seems to have been mostly the result of a reduced organic matter and fibre digestion. In conclusion, Calliandra seems less apt as protein supplement for ruminants while Flemingia could partially replace a high-quality legume in tropical livestock systems. However, methane mitigation would be small due to associated reductions in N and energy retention.  相似文献   

4.
Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (P<0.01) the intake and digestibility of ether extract and decreased the non-fiber carbohydrates; however, there were no influences on the intakes of DM, CP, NDF and total digestible nutrients (TDN). The digestibilities of DM, CP and NDF were not influenced by licuri cake addition. There was a decrease trend on TDN digestibility (P=0.08). Licuri cake replacing ground corn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (P<0.1) presented a linear increase with partial replacement of ground corn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk and Minas frescal cheese fat without negative effects on productive parameters.  相似文献   

5.
Feed intake and its daily pattern are regulated both at a short and a long term by several control pathways, including energy balance regulation. This trial aimed to determine the effect of dietary fibre (DB) (mix of wheat, soy and sugar beet pulp fibres) and aleurone supplementation and their interaction on energy and nitrogen balances in growing pigs with ad libitum access to feed. Forty pigs (BW: 35 kg) were fed diets differing by fibre concentration (NDF concentration: 10% or 14% DM) and aleurone supplementation (0, 2 or 4 g/kg) during 3 weeks. Pigs were housed individually in a respiration chamber during the last week to record feeding behaviour and measure energy and nitrogen balances (n = 36). Glucose oxidation was studied on the 6th day with an injection of [U-13C] glucose and measurement of 13CO2 production. There was no significant interaction between DB inclusion and aleurone supplementation on any variables characterizing feeding behaviour. Pigs had less but longer meals with high level of DB, with an increased interval between two meals without effect on daily feed intake. The meal frequency significantly decreased when aleurone supplementation increased. Total tract apparent digestibility coefficient of DM, organic matter, ash, nitrogen and gross energy decreased when pigs received high DB level. Dietary fibre level increased significantly faecal excreted nitrogen. Aleurone supplementation decreased nitrogen retention. Free access to the feed induced a great individual variability not only in feed intake level (from 784 to 2290 g/day) but also in feeding behaviour (from 5.5 to 21.5 meals per day). This variability can be linked with the importance of underlying feed intake regulation pathways and difference in energy balance and metabolism efficiency. Several profiles of metabolism efficiency can be discriminate, thanks to a clustering based on feeding behaviour and pre-prandial concentrations of metabolites and hormones. In conclusion, DB inclusion decreased meal frequency, increased average meal size, decreased total tract apparent faecal digestibility coefficient of nitrogen and gross energy. Supplementation of aleurone decreased average daily feed intake with a reduction of the meal number per day, without modification of average meal size. Aleurone supplementation decreased nitrogen retention and nutrient deposition. Independently of experimental diets, the high individual variability permitted discriminating different profiles with different metabolic strategies. Efficient pigs with a high energy retention as protein and lipid seem to be able to adapt their metabolism according to energy sources.  相似文献   

6.
Ruminant husbandry constitutes the most important source of anthropogenic methane (CH4). In addition to enteric (animal-derived) CH4, excreta are another source of CH4, especially when stored anaerobically. Increasing the proportion of dietary concentrate is often considered as the primary CH4 mitigation option. However, it is unclear whether this is still valid when diets to be compared are energy-balanced. In addition, non-structural carbohydrates and side effects on nitrogen (N) emissions may be important. In this experiment, diet types representing either forage-only or mixed diets were examined for their effects on CH4 and N emissions from animals and their slurries in 18 lactating cows. Apart from a hay-only diet, treatments included two mixed diets consisting of maize stover, pelleted whole maize plants and gluten or barley straw and grain and soy bean meal. The diets were balanced in crude protein and net energy for lactation. After adaptation, data and samples were collected for 8 days including a 2-day CH4 measurement in respiratory chambers. Faeces and urine, combined proportionately according to excretion, were used to determine slurry-derived CH4 and N emissions. Slurry was stored for 15 weeks at either 14°C or 27°C, and temperatures were classified as 'cool' and 'warm', respectively. The low-starch hay-only diet had high organic matter and fibre digestibility and proved to be equally effective on the cows' performance as mixed diets. The enteric CH4 formation remained unaffected by the diet except when related to digested fibre. In this case emission was lowest with the hay-only diet (61 v. 88 to 101 g CH4/kg digested NDF). Feeding the hay diet resulted in the highest slurry-CH4 production after 7 weeks of storage at 14°C and 27°C, and after 15 weeks at 14°C. CH4 emissions were, in general, about 10-fold higher at 27°C compared with 14°C but only after 15 weeks of storage. Urinary N losses were highest with the barley diet and lowest with the maize diet. There was a trend towards similar differences in N losses from the slurry of these cows (significant at 14°C). However, contrary to CH4, slurry-N emissions seemed to be temperature-independent. In conclusion, energetically balanced diets proved to be widely equivalent in their emission potential when combining animal and their slurry, this even at a clearly differing forage : concentrate ratio. The variation in CH4 emission from slurry stored shortly or at cold temperature for 15 weeks was of low importance as such conditions did not support methanogenesis in slurry anyway.  相似文献   

7.
The aim of the present experiment was to determine if a niacin supplementation of 6 g/d to lactating dairy cow diets can compensate negative effects of a rumen nitrogen balance (RNB) deficit. A total of nine ruminally and duodenally fistulated lactating multiparous German Holstein cows were successively assigned to one of three diets consisting of 10 kg maize silage (dry matter [DM] basis) and 7 kg DM concentrate: Diet RNB- (n = 6) with energy and utilisable crude protein at the duodenum (uCP) according to the average requirement of the animals but with a negative RNB (-0.41 g N/MJ metabolisable energy [ME]); Diet RNB0 (n = 7) with energy, uCP and a RNB (0.08 g N/MJ ME) according to the average requirement of the animals and, finally, Diet NA (n = 5), which was the same diet as RNB-, but supplemented with 6 g niacin/d. Samples of milk were taken on two consecutive days, blood samples were taken on one day pre- and post-feeding and faeces and urine were collected completely over five consecutive days. The negative RNB reduced milk and blood urea content and apparent total tract digestibility of DM, organic matter (OM) and neutral detergent fibre (NDF). Also N excretion with urine, the total N excreted with urine and faeces and the N balance were reduced when the RNB was negative. Supplementation of niacin elevated plasma glucose concentration after feeding and the N balance increased. Supplementing the diet with a negative RNB with niacin led to a more efficient use of dietary N thereby avoiding the negative effects of the negative RNB on the digestibility of DM, OM and NDF.  相似文献   

8.
In order to study the main effects of particle size, three ruminally fistulated cows (550 to 580 kg BW) were fed a constant low concentrate level (3.56 kg DM/d, 20% of total DMI) and a fibre‐rich hay (approximately 60% NDF in DM) in long (28.7 mm), chopped (9.2 mm) and fine ground (2.9 mm) form in a 3 x 3 Latin square design. In another three factorial experiment with 8 wethers (4 animals were ruminally fistulated, mean BW = 68 kg) the main effects and interactions of the above mentioned hay particle sizes at two concentrate levels (10.4 to 13.3% and 29.5 to 40.1% of DMI, resp.) and two intake levels (restricted and ad libitum) were investigated. In comparison to long hay (28.7 mm), feeding of chopped hay (9.2 mm) at low concentrate levels, increased not only the hay intake (7% in dairy cows and 13% in sheep) but also the intake of digestible organic matter (12% in dairy cows and 32% in sheep), due to an increase in the apparent digestibility of OM by 3.8% in dairy cows and 8.2% in sheep. Ad libitum feeding of fine ground hay in combination with low concentrate amount in the ration increased the passage rate in the hindgut and consequently the hay intake, but not the intake of DOM, due to a significant depression of digestibility, especially of fibre fractions (4 to 7% in dairy cows and 4.5 to 14% in sheep), in comparison to 28.7 and 9.2 mm hay particle sizes. The digestibility decreased significantly with restricted feeding of fine ground hay in sheep only in comparison to 9.2 mm particle size. A threefold increase of concentrate amount levelled out all effects of the particle size reduction. The effect of particle size was more pronounced in sheep than in dairy cows.  相似文献   

9.
It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg(-0.75) d(-1)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos' lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant foregut fermenters.  相似文献   

10.
Four multiparous ruminally cannulated Holstein cows (mean bodyweight [BW] 615 kg) in mid-lactation (103 days in milk and 32 kg milk x d(-1) at start of the experiment) were used in an one-factorial experiment to evaluate the effects of fibre level (19, 24, 28, 32 and 39% physically effective NDF [peNDF] in dry matter [DM]) in diets consisting of hay and slowly degradable concentrate on rumen fermentation patterns and digesta particle size, under a constant intake level (146 g DM x kg(-0.75). The different fibre concentrations in the diet were achieved by adjusting the hay to concentrate ratio. The above-mentioned levels of peNDF corresponded to 70, 60, 50, 40 and 25% concentrate in diet DM, respectively, and followed the lactation curve of the cows. The ruminal pH was positively and linearly correlated to the percentage of fibre (peNDF, NDF or CF) in ration DM with R2 of 0.76-0.88 (p < 0.001) for solid digesta (particle-associated rumen fluid, PARL), and R2 of 0.26-0.29 (p < 0.05) for fluid digesta (free rumen liquid, FRL). The lowest fibre level in the diet (19% peNDF) or the highest level of concentrate (70% on DM basis) caused pH values lower than 6.0 at almost all sampling times only in PARL but not in FRL, and significantly increased the proportion of large particles in rumen digesta, which in turn was reflected by a depression of fibre digestibility. A level of 24% peNDF or 60% concentrate in the diet maintained the ruminal pH higher than 6.0 and 5.8 in FRL and PARL, respectively. Therefore, the inclusion of more than 60% slowly degradable concentrate in dairy cows diets fed approximately 18 kg DM x d(-1) is discouraged. Based on the response of ruminal solid digesta to dietary fibre, it can be concluded that the recommendations of feeding a structural value > or =1 per kg DM (De Brabander et al. 1999) underestimated, and 400 g CF per 100 kg BW (Hoffmann 1990) overestimated the evaluation of structural effectiveness of the present diet.  相似文献   

11.
Milk fat composition can be modulated by the inclusion of lipid supplements in ruminant diets. An interaction between the lipid supplement and the forage to concentrate ratio or the type of forage in the rations may affect milk fat composition. However, little is known about the effects of the starch-to-non-forage NDF ratio in the concentrate and lipid supplementation of goat diets. The aim of this work was to determine the role of dietary carbohydrates in goats rations supplemented with linseed oil on animal performance and milk fatty acid (FA) profile. A total of 16 dairy goats were allocated to two simultaneous experiments (two treatments each), in a crossover design with four animals per treatment and two experimental periods of 25 days. In both experiments alfalfa hay was the sole forage and the forage to concentrate ratio (33:67) remained constant. The concentrate in experiment 1 consisted of barley, maize and soybean meal (concentrate rich in starch), whereas it included soybean hulls replacing 25% of barley and 25% maize in experiment 2 (concentrate rich in NDF). As a result, the starch-to-non-forage NDF ratio was 3.1 in experiment 1 and it decreased to 0.8 in experiment 2. Both concentrates were administered either alone or in combination with 30 g/day of linseed oil. Animal performance parameters were not affected by experimental treatments. In contrast, major changes were observed in milk FA profile due to lipid supplementation and the type of concentrate. Linseed oil significantly raised vaccenic and rumenic acids as well as α-linolenic acid and its biohydrogenation intermediates while decreased medium-chain saturated FA (12:0 to 16:0) in milk fat. Milk fat contents of odd and branched-chain FA and trans-10 18:1 responded differently to linseed oil supplementation according to the concentrate fed.  相似文献   

12.
Chemical composition, digestibility, nutritive value and intake of hay from an agri-environmental management (EH) were compared with those from hay (Lolium perenne) from an intensive management (IH). IH was of low to moderate quality because of unfavourable weather conditions. EH was harvested mid-June of 2000 (EH1) and 2001 (EH2) on the same sward that had not received mineral fertilizer for 10 years. The EH was characterized by a species-rich botanical composition. On average, it had lower contents of protein (32%), NDF (9%) and ash (35%), and a higher concentration of water-soluble carbohydrates (117%) than IH. Digestibility of dry and organic matter, determined with sheep, was not different between IH and EH and averaged 59 and 63%, respectively. Crude fibre and NDF digestibility were lower in EH (58 and 57%, respectively) than in IH (70 and 69%, respectively). Net energy value for lactation did not differ between IH and EH and amounted to 4.78 MJ per kg DM. True protein digested in the small intestine and rumen degraded protein balance were lower in EH (63 and -60 g per kg DM) than in IH (71 and -33 g per kg DM). Intake of hay was investigated in Holstein-Friesian heifers and Belgian Blue double-muscled heifers (mean BW 280 +/- 22 kg and 269 +/- 21 kg, respectively), and in Belgian Blue non-lactating and non-pregnant double-muscled cows (initial BW 642 +/- 82 kg), using a cross-over design. Hay was freely available. It was supplemented with 1 kg concentrate daily. Dry matter intake from hay was higher for EH than for IH in heifers (4% and 13%, respectively in Holstein-Friesian and Belgian Blue heifers) and in cows (22%). Hay from an agri-environmental management may be used for low-performing animals, as energy intake only exceeded maintenance requirements by 20 to 35%. Several characteristics of EH were different between years, such as dry matter digestibility, net energy value for lactation and fermentable organic matter content.  相似文献   

13.
A study was conducted to evaluate the effects of supplementing with different tree leaves on nutrient digestion, rumen fermentation and blood parameters of sheep. Thirty adult Malpura rams (39.0 ± 0.56 kg) were divided into five groups of six each. They were grazed as a single flock on a semi-arid rangeland and after the end of routine grazing period (08:00–17:00 h), first group (G1), which was not provided with any supplementation, served as control group. Second group (G2) was supplemented with 200 g of a conventional concentrate mixture per head per day, whereas third, fourth and fifth groups (G3, G4 and G5) were supplemented with approximately 200 g dry matter (DM) per day freshly cut foliage from Ailanthes excelsa, Azardirachta indica and Bauhinia racemosa, respectively. Protein content (g kg−1 DM) in A. excelsa, A. indica and B. racemosa foliage was 197, 128 and 132, respectively. A. indica and B. racemosa foliages also contained 123.2 and 211.2 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 16.5 and 46.5 g kg−1 DM. None of the tree leaves contained hydrolysable tannin (HT). Dry matter intake (DMI, g day−1) was 591, 766, 865, 974 and 939 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolisable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) compared to control (G1). Supplementation improved digestibility of all nutrients in all groups. Rumen fermentation study indicated lower (P < 0.05) ammonia and total N in the rumen liquor collected from G5 sheep compared to the other supplemented groups. Although haemoglobin (Hb, g dl−1) levels showed small changes among groups, blood urea nitrogen (BUN, mg dl−1) was lowest in G5 compared to the other groups. Initial BW were similar among the groups. After 60 days of experimental feeding, all animals maintained their BW, except sheep in the control group (G1), which lost BW. Results indicate that for adult sheep grazing on a semi-arid range, supplementation with a concentrate mixture could be replaced by tree leaves like A. excelsa, A. indica and B. racemosa, during the lean season to maintain their BW. In addition, supplementing with tree leaves containing condensed tannin has advantages in terms of N utilization.  相似文献   

14.
Thirty-four senior dogs (pointers 8-11 years, beagles 9-11 years) were used to evaluate the effects of oligosaccharides on nutritional and immunological characteristics. Dogs were randomly allotted to treatments [1% chicory (CH), 1% mannan-oligosaccharide (MOS), 1% chicory + 1% MOS (CM), or no supplementation (control, CON)] in a parallel design with a 4 week baseline period followed by a 4 week treatment period. Dietary supplementation with MOS or CM tended (P = 0.07) to increase food intake due, in part, to an increase in fermentable fibre and a decrease in energy content of the diet. Although wet faecal output increased (P < 0.05) for dogs supplemented with MOS or CM, when corrected for food intake, no differences were noted. The CM treatment increased (P < 0.05) faecal score (1 = hard and dry, 5 = watery liquid), although these scores remained in a desirable range (3 to 3.5). Chicory supplementation increased (P = 0.07) fat digestibility. Chicory or MOS increased (P < or = 0.05) faecal bifidobacteria concentrations 0.4 and 0.5 log10 cfu/g DM, respectively, compared to the CON, while MOS decreased (P < 0.05) faecal E. coli concentrations. Oligosaccharides did not affect white blood cell (WBC) concentrations, but CH and CM tended to increase (P = 0.10) neutrophil concentrations compared to control dogs. Peripheral lymphocyte concentrations were decreased in dogs supplemented with MOS (P = 0.06) and CM (P < 0.05). Chicory and MOS alter faecal microbial populations and certain indices of the immune system of senior dogs.  相似文献   

15.
A balance experiment was carried out to investigate the effects of betaine monohydrate (BET) or betaine derived from condensed molasses solubles (CMS) as a substitute for methionine and choline on nitrogen (N) balance and total tract nutrient digestibility in weaned piglets. The experiment included four treatments with 32 barrows with an average initial body weight (BW) of 13.5 kg. The supplementation of DL-methionine and choline (positive control = PC) to the basal diet, which was deficient in methionine and low in compatible osmolytes in the form of betaine or its precursor choline (negative control = NC) resulted in a significant increase in N retention of 0.8 g/d. The substitution of DL-methionine and choline with BET or CMS did not affect N retention compared to the PC and the NC treatment either. Feeding the PC diet increased the digestibilities of organic matter, NDF, ADF, NFE, crude ash, Ca, P, methionine, tryptophan and cystine by 1.9%, 7.3%, 9.7%, 1.1%, 6.3%, 13.9%, 7.7%, 15.9%, 4.3% and 2.8%, respectively, and tended (p < 0.20) to increase the digestibilities of most other amino acids by 1.6-3.4%. Digestibility of CP, EE (HCl), Mg and Na was 3.1% (p=0.09), 5.1% (p=0.09), 5.1% (p= 0.06) and 3.3% (p= 0.17) higher, respectively, when compared to the NC treatment. BET and CMS supplementation increased most nutrient digestibilities in the same magnitude as for the PC treatment. In summary, the supplementation of betaine, originating from different sources, to a diet with low contents of compatible osmolytes increased in particular the fermentation of fibre and enhanced mineral absorption. The supplementation of the NC with DL-methionine was more efficient in improving N retention than the replacement of DL-methionine by betaine originating from BET or CMS.  相似文献   

16.
Twenty male crossbred calves were divided into four equal groups. Calves in groups I and II were fed wheat straw ad libitum with a concentrate mixture with or without monensin (30 mg per day per animal). Calves in groups III and IV were fed wheat straw ad libitum with 70% of the allocated concentrate mixture and had free access to urea molasses mineral block (UMMB) with or without monensin (100 ppm). Wheat straw intake was higher (P<0.05) in UMMB supplemented groups, but total dry matter (DM) and crude protein (CP) intake did not differ. ME (Mcal per day) intake was higher (P<0.05) in UMMB supplemented groups. Digestibility of DM, OM, EE, and NDF did not differ due to UMMB or monensin supplementation, although ADF digestibility was increased (P<0.01) with UMMB supplementation. Although the N balance was similar among the groups, the Ca and P balances were higher in UMMB supplemented groups. Blood glucose level was increased (P<0.05) due to monensin treatment but plasma urea N level did not differ. Average body weight gain, feed conversion efficiency, protein utilisation efficiency, and energy utilisation efficiency were higher (P>0.05) in monensin treated groups without any change in body composition. Replacing 30% of a concentrate mixture with a cold process UMMB increased the proportional contribution of wheat straw to DM intake but had no effect on animal performance. However, supplementation with monensin increased the blood glucose level, protein and energy deposition, as well as body weight gain and feed efficiency, but with no change in the wheat straw and total DM consumption.  相似文献   

17.
The dry-matter digestibility (DMD) of a low quality tropical grass hay was much higher in cattle (49.6%) than in sheep (34.6%). This difference was not due to a difference in relative intake per kg liveweight (W0.9) nor to a difference in the diet selected. However, neutral-detergent fibre (NDF) was digested better by cattle than by sheep. For each kg of dry matter consumed, cattle digested 415 g NDF and sheep 279 g NDF. This was because 60% more of the hemicellulose and 35% more of the cellulose were digested by cattle than by sheep.Differences between cattle and sheep in the concentrations of urea and sulphate in blood, and the relatively lower excretion of N, P and Ca by the cattle suggested that the rumen micro-organisms of the cattle were utilizing these nutrients better than those of the sheep. This could have increased microbial activity in the rumen and, hence, digestion of fibre.  相似文献   

18.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520 kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10 cm (top) and 25-35 cm beneath the top of the particle mat (middle) and 5-10 cm above the rumen floor (bottom). For a main plot treatment (H x C), repeated samples were collected at four time intervals (1 h before and 2, 5 and 10 h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P < 0.05); pH and bicarbonate concentration increased (P < 0.05), while DM, NDF, ADF and ADL contents in SM, MPL and SG did not differ. Higher NDF content of hay (from 47-62%) increased SM, fibre fractions in SM, MPL, pH and concentration of bicarbonate in ruminal digesta, especially when 50% concentrate was given, while SG decreased. When the concentrate level was enhanced from 20 to 50%, digesta SM, MPL and the content of DM and NDF in SRF increased, while pH, concentrations of SCFA and acetate decreased when low-fibre hay was given. With longer time after feeding the digesta SM was reduced and fibre content in SM increased. The increase of the fibre content of hay reduced the possible negative effect of high concentrate level on the stratification of ruminal digesta. The decrease of the fibre content of hay promised better conditions for fibre digestion in the rumen when concentrate availability is limited.  相似文献   

19.
Chemical composition, digestibility, nutritive value and intake of hay from an agri-environmental management (EH) were compared with those from hay (Lolium perenne) from an intensive management (IH). IH was of low to moderate quality because of unfavourable weather conditions. EH was harvested mid-June of 2000 (EH1) and 2001 (EH2) on the same sward that had not received mineral fertilizer for 10 years. The EH was characterized by a species-rich botanical composition. On average, it had lower contents of protein (32%), NDF (9%) and ash (35%), and a higher concentration of water-soluble carbohydrates (117%) than IH. Digestibility of dry and organic matter, determined with sheep, was not different between IH and EH and averaged 59 and 63%, respectively. Crude fibre and NDF digestibility were lower in EH (58 and 57%, respectively) than in IH (70 and 69%, respectively). Net energy value for lactation did not differ between IH and EH and amounted to 4.78 MJ per kg DM. True protein digested in the small intestine and rumen degraded protein balance were lower in EH (63 and ??60?g per kg DM) than in IH (71 and ??33?g per kg DM). Intake of hay was investigated in Holstein-Friesian heifers and Belgian Blue double-muscled heifers (mean BW 280?±?22?kg and 269?±?21?kg, respectively), and in Belgian Blue non-lactating and non-pregnant double-muscled cows (initial BW 642?±?82?kg), using a cross-over design. Hay was freely available. It was supplemented with 1?kg concentrate daily. Dry matter intake from hay was higher for EH than for IH in heifers (4% and 13%, respectively in Holstein-Friesian and Belgian Blue heifers) and in cows (22%). Hay from an agri-environmental management may be used for low-performing animals, as energy intake only exceeded maintenance requirements by 20 to 35%. Several characteristics of EH were different between years, such as dry matter digestibility, net energy value for lactation and fermentable organic matter content.  相似文献   

20.
A 2 × 2 factorial feeding experiment was conducted to examine the effects of varying the maturity level of the grass used to prepare silage and the nature of concentrate starch source and their interactions on dry matter intake (DMI), diet digestibility, energy corrected milk (ECM) production and milk composition in dairy cows. Twenty-eight multiparous Swedish Red dairy cows, 133 ± 45 days in milk (DIM), with an average milk yield of 30 ± 4 kg/day and a live weight of 624 ± 69 kg were blocked by DIM and randomly assigned to seven replicated balanced 4 × 4 Latin squares with four 21-day experimental periods. The experimental diets consisted of four total mixed rations (TMR) consisting of early-cut grass silage (EGS) supplemented with either barley- or maize-based concentrate and late-cut grass silage (LGS) supplemented with either barley- or maize-based concentrate. All TMR contained identical proportions of forage (51%) and concentrate (49%). Total tract digestibility was estimated by determining indigestible NDF (iNDF) concentrations in feeds and faeces and using iNDF as an internal marker. The feeds’ ruminal degradation parameters were determined using both in situ (nylon bag) and in vitro (gas production (GP)) techniques. Cows offered diets containing EGS had greater (P < 0.001) daily dry matter (DM) intakes, ECM yields and total tract digestibilities for DM and organic matter (OM), but these were not affected by the nature of the concentrate starch source. No interaction between the maturity of the silage and the nature of the concentrate starch source was observed for DMI, diet digestibility or ECM yield. Both grass silages and concentrates had similar rates of ruminal degradation of NDF when measured in situ. The in situ DM (P < 0.001) and starch (P = 0.001) degradation rates of barley-based concentrate were greater than those for maize-based concentrate. In vitro OM GP rates and extents were similar for both concentrate feeds. The results showed that diets containing EGS offered better animal performance and diet digestibility than diets containing LGS. The concentrate starch source did not affect animal performance, but total NDF digestibility was better with diet containing barley- than maize-based concentrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号