首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were incubated with trypsin or pronase for several hours. The indigestible residue was analyzed by polyacrylamide gel electrophoresis. Trypsinization resulted in a complete digestion of all proteins with the exception of the pigment-protein complexes as well as a polypeptide not yet characterized. Yet, as compared with untreated material, Complex II was found to have higher electrophoretic mobility. Electron-microscopic studies illustrate that the indigestible residue still has a preserved membrane structure. Disintegration of the thylakoid membranes by sodium dodecyl sulfate followed by trypsinization also resulted in the two complexes while all the other proteins were found to be digested. However, after removal of the lipids the protein moieties of the complexes proved to be easily digestible. From these results it is concluded that pigment-protein interaction may be an important factor in maintaining a conformation rather resistant to perturbants and proteases. In contrast to trypsin, pronase completely digested the polypeptides of the thylakoid membranes including the protein moieties of the pigment-protein complexes leaving an amorphous lipid mass. The results support the assumption that the complexes are necessary to maintain the membrane structure.  相似文献   

7.
8.
9.
Evolution of glycolytic enzymes   总被引:4,自引:0,他引:4  
The requirements for glycolysis are examined in relation to other essential metabolic processes in the most primitive organisms. The construction of more complex enzymes from primitive domain building blocks is assessed with respect to glycolytic enzymes. Special attention is given to the evolution of the NAD binding domain in dehydrogenases and the related, frequently observed nucleotide binding domain. An attempt is made to differentiate between convergence and divergence of frequently observed domains. Consideration is given to the structure-function relation of these domains and the development of quaternary structure in later stages of evolution. Some attention is also given to the evolution of the structural adaptation to extreme environments as a means of differentiating between essential functions and specific modifications.  相似文献   

10.
Partition equilibrium experiments have been used to characterize the interactions of erythrocyte ghosts with four glycolytic enzymes, namely aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydrogenase, in 5 mM sodium phosphate buffer (pH 7.4). For each of these tetrameric enzymes a single intrinsic association constant sufficed to describe its interaction with erythrocyte matrix sites, the membrane capacity for the first three enzymes coinciding with the band 3 protein content. For lactate dehydrogenase the erythrocyte membrane capacity was twice as great. The membrane interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase were mutually inhibitory, as were those involving either of these enzymes and lactate dehydrogenase. Although the binding of phosphofructokinase to erythrocyte membranes was inhibited by aldolase, there was a transient concentration range of aldolase for which its interaction with matrix sites was enhanced by the presence of phosphofructokinase. In the presence of a moderate concentration of bovine serum albumin (15 mg/ml) the binding of aldolase to erythrocyte ghosts was enhanced in accordance with the prediction of thermodynamic nonideality based on excluded volume. At higher concentrations of albumin, however, the measured association constant decreased due to very weak binding of the space-filling protein to either the enzyme or the erythrocyte membrane. The implications of these findings are discussed in relation to the likely subcellular distribution of glycolytic enzymes in the red blood cell.  相似文献   

11.
Interactions of glucose-6-phosphate isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9), aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate lyase, EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12), triose-phosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1), phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1), phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.3), enolase (2-phospho-D-glycerate hydro-lyase, EC 4.2.1.11), pyruvate kinase (ATP:Pyruvate O2-phosphotransferase, EC 2.7.1.40) and lactate dehydrogenase [S)-lactate:NAD+ oxidoreductase, EC 1.1.1.27) with F-actin, among the glycolytic enzymes listed above, and with phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) were studied in the presence of poly(ethylene glycol). Both purified rabbit muscle enzymes and rabbit muscle myogen, a high-speed supernatant fraction containing the glycolytic enzymes, were used to study enzyme-F-actin interactions. Following ultracentrifugation, F-actin and poly(ethylene glycol) tended to increase and KCl to decrease the pelleting of enzymes. In general, the greater part of the pelleting occurred in the presence of both F-actin and poly(ethylene glycol) and the absence of KCl. Enzymes that pelleted more in myogen preparations than as individual purified enzymes in the presence of poly(ethylene glycol) and the absence of F-actin were tested for specific enzyme-enzyme associations, several of which were observed. Such interactions support the view that the internal cell structure is composed of proteins that interact with one another to form the microtrabecular lattice.  相似文献   

12.
13.
It was established in experimental normobaric and hypobaric hypoxia and hemic hypoxia induced by carbon monoxide poisoning that zinc compounds administered in a dose of 0.15 mA/kg have a marked prophylactic protective effect. The mechanism of action of zinc compounds consists in changes of oxygen transport blood function. It was shown that interaction of the hemoglobin molecule with zinc ion brings about an increase in Hb affinity for O2 (the left drive of the oxyhemoglobin dissociation curve), a reduction in cooperative interaction of hemoglobin subunits, and a relative decrease in hemoglobin affinity for carbon monoxide. The leading defence mechanism against hypoxic hypoxia is the left drive, the mechanism of defence against carbon monoxide protection consists in the lowering of the "hem-hem" cooperation and of the relative hemoglobin affinity for carbon monoxide.  相似文献   

14.
1. It has been shown that a number of proteolytic enzymes and snake venom, in relatively small amounts, and within a wide range of pH variation, will restore hyaluronidase activity after its inhibition by serum. 2. The known properties of the venom protease are found to be identical with those of Haas' "proinvasin I." It is concluded that the protease of the venom offers adequate explanation for the effects previously attributed to "proinvasin I." 3. Proteolytic activity is found in hyaluronidase preparations of bovine origin and is considered to be responsible for the reversal of inhibition of hyaluronidase by serum.  相似文献   

15.
Multifaceted roles of glycolytic enzymes   总被引:16,自引:0,他引:16  
  相似文献   

16.
The effect of penicillin, tetracycline, aminoglucozide antibiotics and streptomycin on BAEE-esterase activity of trypsin was studied. It was found that benzylpenicillin in amounts of 50, 100 and 300 mg, ampicillin in an amount of 25 mg, methicillin in an amount of 12 mg and tetracycline in an amount of 2.5 mg as calculated per 1 mg of trypsin had no effect in vitro on the esterase activity of the enzyme. Neomycin, kanamycin and streptomycin in amounts of 5, 10, 100 or 300 mg per 1 mg of trypsin catalyzed splitting of BAEE by trypsin. When the antibiotics were added to the bile, its esterase activity increased. Preliminary intramuscular administration of trypsin and kanamycin to the rats had no effect on the ampicillin levels in the blood serum and brain and did not affect the permeability of the hemato-encephalic barrier as compared to the use of trypsin alone.  相似文献   

17.
On the basis of the analysis of the data on adsorption of glycolytic enzymes to structural proteins of skeletal muscles and to the erythrocyte membranes, the data on enzyme-enzyme interactions and the data on the regulation of activity of glycolytic enzymes by cellular metabolites, the structure of the glycolytic enzymes complex adsorbed to a biological support has been proposed. The key role in the formation of multienzyme complex belongs to 6-phosphofructokinase. The enzyme molecule has two association sites, one of which provides the fixation of 6-phosphofructokinase on the support and another is saturated by fructose-1,6-bisphosphate aldolase. The multienzyme complex contains one tetrameric molecule of 6-phosphofructokinase and two molecules of each of other glycolytic enzymes. Hexokinase is not a part of the complex. The molecular mass of the multienzyme complex is about 2.6 X 10(6) daltons. The multienzyme complex has symmetry axis of second order. The formation of the multienzyme complex leads to the compartmentation of glycolytic process. The problem of integration of physico-chemical mechanisms of enzyme activity regulation (allosteric, dissociative and adsorptive mechanisms) is discussed.  相似文献   

18.
On the basis of the analysis of the data on adsorption of glycolytic enzymes to structural proteins of skeletal muscle and to erythrocyte membranes, the data on enzyme-enzyme interactions and the data on the regulation of activity of glycolytic enzymes by cellular metabolites the structure of glycolytic enzyme complex adsorbed to a biological support has been proposed. The key role in the formation of the multienzyme complex belongs to 6-phosphofructokinase. The enzyme molecule has two association sites, one of which provides the fixation of 6-phosphofructokinase on the support and another is saturated by fructose-1,6-bisphosphate aldolase. The multienzyme complex fixed on structural proteins of skeletal muscle contains one tetrameric molecule of 6-phosphofructokinase and at two molecules of other glycolytic enzymes. Hexokinase is not involved in the complex composition. The molecular mass of the multienzyme complex is about 2,6 X 10(6) Da. The formation of the multienzyme complex leads to the compartmentation of the glycolytic process. The problem of integration of physico-chemical mechanisms of enzyme activity regulation (allosteric, dissociative and adsorptive mechanisms) is discussed.  相似文献   

19.
Inhibition of three glycolytic enzymes by NaF and Na2PO3F1 in isolated rat hepatocytes has been demonstrated. The data indicate that incubation of hepatocytes with NaF or MFP and subsequent removal of NaF and MFP results in a significant inhibition of enolase (E.C. 4.2.1.11), phosphoglucomutase (E.C. 2.7.5.1.), and pyruvate kinase (E.C. 2.7.1.40). It is suggested that the fluorine compound enters the hepatocyte, becomes bound to the enzyme (phosphoglucomutase and enolase) and inhibits its activity. The inhibition of pyruvate kinase may be due to a cAMP dependent phosphorylation of the enzyme.  相似文献   

20.
Immobilization of proteolytic enzymes   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号