首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenic factors, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), and their receptors, are strongly regulated during the development of bovine corpus luteum (CL). The aim of this study was to investigate real-time changes of these factors in luteal tissue of cows (n = 4-5 per group) in the mid-luteal phase (day 8-12) after intramuscular injection of the PGF2alpha-analog Cloprostenol. Before (control) and 2, 4, 12, 48, and 64 hr after prostaglandin (PG) injection, CL were collected by transvaginal ovariectomy. RT-PCR for VEGF, VEGF-receptor type 1 (VEGF-R1), VEGF-R2, acidic FGF (FGF-1), basic FGF (FGF-2), and FGF-receptor (FGF-R) was performed. Additionally, the protein concentration for VEGF was determined. The mRNA expression of VEGF and its two receptors (VEGF-R1 and -R2) was significantly downregulated during structural luteolysis (after 12 hr). VEGF protein concentration already significantly declined 2 hr after PGF2alpha. Surprisingly FGF-1 and FGF-2 were significantly and maximally upregulated during functional luteolysis (until 12 hr). Furthermore, FGF-R mRNA was significantly upregulated at 2 hr after PGF2alpha, when compared with the control group. During structural luteolysis, the expression of FGFs and their receptors was not significantly different from control, except FGF-2 mRNA, which was downregulated at 64 hr. We conclude that the cessation of VEGF-support for the CL plays a role during structural luteolysis, whereas FGFs seem to have a major impact on functional luteolysis. The possible role of these growth factors could be a transient counter-regulation of luteolysis, but also an involvement in preventing inflammatory reactions during luteal regression.  相似文献   

2.
The insulin-like growth factors, IGF-I and -II, have been shown to play a key role in luteal function in some species. The IGF binding proteins, IGFBP-2 and -3, have been shown to inhibit binding of IGF-I and -II to bovine luteal cells and decrease progesterone production. We have recently shown that equine follicles have the genetic capacity to produce IGFBP-2, and that levels decrease in healthy preovulatory follicles. In the present study expression of mRNAs encoding IGFBP-2, as well as the rate-limiting steroidogenic enzyme, P450scc, were studied in equine corpora lutea to investigate whether IGFBP-2 might be involved in luteolysis. Corpora lutea were collected from mares in mid-luteal phase (day 10), at early regression (day 14), late regression (day 17), and 12 and 36 h after intramuscular administration of the PGF(2alpha) analogue, cloprostenol (0.5 microg/kg). During early natural regression, and 12 h after administration of cloprostenol on day 10, steady state levels of mRNAs encoding P450scc had decreased significantly compared with day 10 of dioestrus (P < 0.001). Levels of mRNA encoding IGFBP-2 increased significantly between mid-diestrus and early (P < 0.01) and late (P < 0.001) regression, and 36 h after cloprostenol administration (P < 0.001). We conclude that the genetic capacity for increased IGFBP-2 production in the early stages of natural luteolysis in the mare may act to sequester IGF-I in the CL, assisting in inhibition of progesterone production. However the delay in increase in mRNA encoding IGFBP-2 after cloprostenol administration, combined with the sharp fall in expression of P450scc mRNA, suggests that the luteolytic action of a pharmacological dose of cloprostenol may not be mediated via IGFBP-2 in the mare.  相似文献   

3.
4.
5.
It is well known that prostaglandin F(2alpha) (PGF(2alpha)) is a physiological luteolysine, and that its pulsatile release from the endometrium is a luteolytic signal in many species. There is now clear evidence that the vasoactive peptides endothelin-1 (ET-1) and angiotensin II (Ang II) interact with PGF(2alpha) in the luteolytic cascade during PGF(2alpha)-induced luteolysis in the cow. Thus, we investigated the local secretion of PGF(2alpha), ET-1, and Ang II in the corpus luteum (CL) and their real-time relationships during spontaneous luteolysis in the cow. For this purpose, an in vivo microdialysis system (MDS) implanted in the CL was utilized to observe local secretion changes within the CL microenvironment. Each CL of cyclic Holstein cows (n = 6) was surgically implanted with MDS capillary membranes (18 lines/6 cows) on Day 15 (estrus = Day 0) of the estrous cycle. The concentrations of PGF(2alpha), ET-1, Ang II, and progesterone (P) in the MDS samples were determined by enzyme immunoassays. The intraluteal PGF(2alpha) secretion slightly increased from 12 h after the onset of luteolysis (0 h) and drastically increased (by about 300%) from 24 h. Intraluteal ET-1 secretion increased from 12 h. Intraluteal Ang II secretion was elevated from 0 h and was maintained at high levels (about 180%) toward estrus. In each MDS lines (in the same microenvironment) within the regressing CL, the local releasing profiles of PGF(2alpha), ET-1, and Ang II CL positively correlated with each other (P < 0.05) at high proportions in 18 MDS lines (PGF(2alpha) vs. ET-1, 44.4%; PGF(2alpha) vs. Ang II, 55.6%; ET-1 vs. Ang II, 38.9%). In contrast, there was no clear relationship among these substances released into different MDS lines implanted in the same CL (with different microenvironments). In conclusion, we propose that the increase of PGF(2alpha), ET-1, and Ang II within the CL during luteolysis is a common phenomenon for both PGF(2alpha)-induced and spontaneous luteolysis. Moreover, this study illustrated the in vivo relationships in intraluteal release among PGF(2alpha), ET-1, and Ang II during spontaneous luteolysis in the cow. The data suggest that these vasoactive substances may interact with each other in a local positive feedback manner to activate their secretion in the regressing CL, thus accelerating and completing luteolysis.  相似文献   

6.
Secretion of prostaglandins (PGs) by the regressing corpus luteum (CL) was investigated in the cow. Six cows were implanted with microcapillary dialysis membranes of a microdialysis system (MDS) into the CL during Days 8-9 (Day 0 = estrus), and a prostaglandin (PG) F2alpha analogue (Estrumate) was injected intramuscularly (i.m.) to induce luteolysis. Acute increases in intraluteal release of PGF2alpha and PGE2 were observed during the first 4 h, followed by decreases over the next 8 h. Intraluteal release of both PGs gradually increased again during the period 48-72 h. Concentrations of PGF2alpha in ovarian venous plasma (OVP) were 4-13 times higher than those of jugular venous plasma (JVP) (P < 0.001) during the period of the experiment, and increased from 24 h after treatment with Estrumate (P < 0.05). Cyclooxygenase (COX)-2 mRNA expression increased (P < 0.05) at 2 and 24 h after treatment with Estrumate. The results indicated that local release of PGF2alpha and PGE2, and COX-2 mRNA expression were increased by Estrumate in the regressing CL at the later stages of luteolysis. Thus, luteal secretion of PGs may be involved in the local mechanism for structural rather than functional luteolysis.  相似文献   

7.
The present study was conducted to evaluate whether the corpus luteum (CL) of the water buffalo (Bubalus bubalis) cow undergoes luteal regression by the process of apoptosis and to examine the involvement of mitogen-activated protein (MAP) kinases during prostaglandin (PG) F(2alpha)-induced luteolysis. Sections of CL from late in the estrous cycle, i.e., during spontaneous luteolysis, stained for 4',6'-diamidino-2-phenylindole revealed increased numbers of condensed nuclei, indicating cell death by apoptosis, which was confirmed further by the occurrence of pronounced oligonucleosome formation. For morphological and biochemical characterization during PGF(2alpha)-induced apoptosis, CL were collected at 0, 4, 12, and 18 h after injection of 750 micro g of Tiaprost, a synthetic analogue of PGF(2alpha), to midestrous buffalo cows. Serum progesterone concentrations fell within 4 h and decreased (P < 0.05) maximally by 18 h. Concomitant decreases (P < 0.05) in the levels of steroidogenic acute regulatory mRNA and protein were observed in CL during 12-18 h, with the more profound effect on mRNA levels. Quantitative analysis of the genomic DNA showed a >5-fold increase (P < 0.05) in the low molecular weight DNA fragments by 18 h postinjection. Immunoblot analysis of CL tissue lysates showed increased (P < 0.05) levels of phospho-Jun N-terminal kinase (JNK) 1 (4- to 14-fold during 4-18 h) and phospho-p38 (2- to 4-fold at 18 h). Immunohistochemical evaluation of CL sections revealed an increased nuclear localization of phospho-JNK after treatment. These findings demonstrate that the CL of the buffalo cow undergoes cell death by the process of apoptosis both during spontaneous and PGF(2alpha)-induced luteolysis and that MAP kinases are involved during PGF(2alpha)-mediated apoptosis in the CL.  相似文献   

8.
Luteal regression is a multistep, prolonged process, and long-term luteal cultures are required for studying it in vitro. Cell suspensions from ovaries of superovulated rats were enriched with steroidogenic cells, seeded on laminin or fibronectin, and maintained in defined medium for up to 10 days. Progesterone secretion was much lower than that of 20alpha-dihydroprogesterone, a product of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). Prolactin added throughout the incubation period gradually increased the percent progesterone out of total progestins to fourfold, while reducing 20alpha-HSD mRNA by 73%. Luteinizing hormone accelerated the establishment of higher percent progesterone by prolactin but by itself had no effect. Prolactin did not increase total progestin production or cytochrome P450 side-chain cleavage (P450(scc)) mRNA. Cell viability was unaffected by prolactin and/or LH. Prostaglandin F2alpha (PGF2alpha) was added 7-8 days after seeding. In prolactin-treated cells, PGF2alpha reduced steroidogenesis after 4-45 h, and at 45 h total progestins and P450(scc) mRNA were reduced by 45%. At 8-45 h PGF2alpha reduced the percent progesterone out of total progestins, and at 45 h 20alpha-HSD mRNA was doubled. In contrast, in prolactin-deprived cultures, PGF2alpha had little effect on total progestins or 20alpha-HSD mRNA but doubled P450(scc) mRNA. Phospholipase C activity was stimulated by PGF2alpha regardless of prolactin. Thus, when prolactin-treated, our cultures are a good model for mature corpora lutea challenged with PGF2alpha; the finding that without prolactin PGF2alpha has an alternative set of actions could help in identifying the signaling pathways of PGF2alpha responsible for its luteolytic effects.  相似文献   

9.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

10.
Luteal regression is initiated by prostaglandin F(2 alpha) (PGF(2 alpha)). In domestic species and primates, demise of the corpus luteum (CL) enables development of a new preovulatory follicle. However, during early stages of the cycle, which are characterized by massive neovascularization, the CL is refractory to PGF(2 alpha). Our previous studies showed that endothelin-1 (ET-1), which is produced by the endothelial cells lining these blood vessels, plays a crucial role during PGF(2 alpha)-induced luteolysis. Therefore, in this study, we compared the effects of PGF(2 alpha) administered at the early and mid luteal phases on ET-1 and its type A receptors (ETA-R) along with plasma ET-1 and progesterone concentrations, and the mRNA levels of PGF(2 alpha) receptors (PGF(2 alpha)-R) and steroidogenic genes. As expected, ET-1 and ETA-R mRNA levels were markedly induced in midcycle CL exposed to luteolytic dose of PGF(2 alpha) analogue (Cloprostenol). In contrast, neither ET-1 mRNA nor its receptors were elevated when the same dose of PGF(2 alpha) analogue was administered on Day 4 of the cycle. In accordance with ET-1 expression within the CL, plasma ET-1 concentrations were significantly elevated 24 h after PGF(2 alpha) injection only on Day 10 of the cycle. The steroidogenic capacity of the CL (plasma progesterone as well as the mRNA levels of steroidogenic acute regulatory protein and cytochrome P450(scc)) was only affected when PGF(2 alpha) was administered during midcycle. Nevertheless, PGF(2 alpha) elicited certain responses in the early CL: progesterone and oxytocin secretion were elevated, and PGF(2 alpha)-R was transiently affected. Such effects probably result from PGF(2 alpha) acting on luteal steroidogenic cells. These findings may suggest, however, that the cell type mediating the luteolytic actions of PGF(2 alpha), possibly the endothelium, could yet be nonresponsive during the early luteal phase.  相似文献   

11.
12.
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.  相似文献   

13.
Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  相似文献   

14.
Prostaglandin (PG) F(2alpha) is implicated in the process of luteal regression in many species, and has been shown to increase the generation of reactive oxygen species. In this study, the role of reactive oxygen species in the local regulatory mechanisms of functional luteolysis in the ewe was examined. In Experiment 1, we studied local effects of hydrogen peroxide (H(2)O(2)) and its interaction with PGF(2alpha) on P secretion in ovine corpus luteum (CL) in vivo. For this purpose, a microdialysis system (MDS) was used, where only the cells surrounding the capillary membrane in the microenvironment of the CL are exposed to these factors, and the P secretory ability of the CL is maintained as if intact. The study used a multiple CL model to implant the MDS, enabling us to examine in parallel several experimental infusions into the MDS implanted in different CLs (one MDS line per CL) developed after superovulation in one ewe. On Day 8 after GnRH treatment, the MDS were implanted into multiple CL in both ovaries of six ewes. A 4-h infusion with PGF(2alpha) (10(-6)M) at 8-12 h slightly increased P release during infusion, while a 4-h infusion with H(2)O(2) (10(-3)M) at 20-24 h decreased P release at 27-38 h. A pre-infusion with PGF(2alpha) for 4h at 8-12h, followed by infusion of H(2)O(2) at 20-24 h rapidly decreased the P release at 20-40 h (P<0.05); this decrease occurred 7h earlier than in the CL treated with H(2)O(2) alone. In Experiment 2, by utilizing the MDS we also applied free radical scavengers to examine their possible weakening effect on the inhibition of P secretion in the microenvironment within the regressing CL induced by PGF(2alpha) treatment. On Day 8 after estrus, the MDS were implanted into the CL (single CL model, two MDS lines per CL). Infusion of free radical scavengers, superoxide dismutase (SOD;50mg/ml)+catalase (CAT; 10mg/ml), at 0-28 h first increased P release until 12 h (P<0.05), and consequently delayed the decrease in P release until 30 h after administration of PGF(2alpha) i.m. (P<0.05). The present results support the concept that the leading pathway from PGF(2alpha) induces an increase of reactive oxygen species in luteolysis in the ewe.  相似文献   

15.
16.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

17.
Transvaginal ultrasound-guided luteal biopsy was used to evaluate the effects of prostaglandin (PG)F2alpha on steady-state concentrations of mRNA for specific genes that may be involved in regression of the corpus luteum (CL). Eight days after ovulation (Hour 0), mares (n=8/group) were randomized into three groups: control (no treatment or biopsy), saline+biopsy (saline treatment at Hour 0 and luteal biopsy at Hour 12), or PGF2alpha+biopsy (5mg PGF2alpha at Hour 0 and luteal biopsy at Hour 12). The effects of biopsy on CL were compared between the controls (no biopsy) and saline+biopsy group. At Hour 24 (12h after biopsy) there was a decrease in circulating progesterone in saline group to 56% of pre-biopsy values, indicating an effect of biopsy on luteal function. Mean plasma progesterone concentrations were lower (P<0.001) at Hour 12 in the PG group compared to the other two groups. The relative concentrations of mRNA for different genes in luteal tissue at Hour 12 was quantified by real time PCR. Compared to saline-treated mares, treatment with PGF2alpha increased mRNA for cyclooxygenase-2 (Cox-2, 310%, P<0.006), but decreased mRNA for LH receptor to 44% (P<0.05), steroidogenic acute regulatory protein to 22% (P<0.001), and aromatase to 43% (P<0.1) of controls. There was no difference in mRNA levels for PGF2alpha receptor between PG and saline-treated groups. Results indicated that luteal biopsy alters subsequent luteal function. However, the biopsy approach was effective for collecting CL tissue for demonstrating dynamic changes in steady-state levels of mRNAs during PGF2alpha-induced luteolysis. Increased Cox-2 mRNA concentrations suggested that exogenous PGF2alpha induced the synthesis of intraluteal PGF2alpha. Thus, the findings are consistent with the concept that an intraluteal autocrine loop augments the luteolytic effect of uterine PGF2alpha in mares.  相似文献   

18.
Luteal tissue contains matrix metalloproteinases (MMPs) that cleave specific components of the extracellular matrix (ECM) and are inhibited by tissue inhibitors of metalloproteinases (TIMPs). We previously reported a decrease in luteal TIMP-1 within 15 min of prostaglandin F(2 alpha) (PGF(2 alpha))-induced luteolysis. An increase in the MMP:TIMP ratio may promote ECM degradation and apoptosis, as observed in other tissues that undergo involution. The objectives of these experiments were to determine whether 1) PGF(2 alpha) affects expression of mRNA encoding fibrillar collagenases (MMP-1 and -13), gelatinases A and B (MMP-2 and -9), membrane type (mt)-1 MMP (MMP-14), stromelysin (MMP-3), and matrilysin (MMP-7), and 2) PGF(2 alpha) increases MMP activity during PGF(2 alpha)-induced luteolysis in sheep. Corpora lutea (n = 3-10/time point) were collected at 0, 15, and 30 min and 1, 2, 4, 6, 12, 24, and 48 h after PGF(2 alpha) administration. Northern blot analysis confirmed the presence of all MMPs except MMP-9. Expression of mRNA for the above MMPs (except MMP-2) increased significantly (P < 0.05) by 30 min, and all MMPs increased significantly (P < 0.05) by 6 h after PGF(2 alpha) administration. Expression of MMP-14 mRNA increased significantly (P < 0.05) by 15 min post-PGF(2 alpha) and remained elevated through 48 h. MMP activity in luteal homogenates (following proenzyme activation and inactivation of inhibitors) was increased significantly (P < 0.05) by 15 min and remained elevated through 48 h post-PGF(2 alpha). MMP activity was localized (in situ zymography) to the pericellular area of various cell types in the 0-h group and was markedly increased by 30 min post-PGF(2 alpha). MMP mRNA expression and activity were significantly increased following PGF(2 alpha) treatment. Increased MMP activity may promote ECM degradation during luteolysis.  相似文献   

19.
One of the postulated main luteolytic actions of prostaglandin (PG) F(2 alpha) is to decrease ovarian blood flow. However, before Day 5 of the normal cycle, the corpus luteum (CL) is refractory to the luteolytic action of PGF(2 alpha). Therefore, we aimed to determine in detail the real-time changes in intraluteal blood flow after PGF(2 alpha) injection at the early and middle stages of the estrous cycle in the cow. Normally cycling cows at Day 4 (early CL, n = 5) or Days 10--12 (mid CL, n = 5) of the estrous cycle (estrus = Day 0) were examined by transrectal color and pulsed Doppler ultrasonography to determine the blood flow area, the time-averaged maximum velocity (TAMXV), and the volume of the CL after an i.m. injection of a PGF(2 alpha) analogue. Ultrasonographic examinations were carried out just before PG injection (0 h) and then at 0.5, 1, 2, 4, 8, 12, 24, and 48 h after the injection. Blood samples were collected at each of these times for progesterone (P) determination. The ratio of the colored area to a sectional plane at the maximum diameter of the CL was used as a quantitative index of the changes in blood flow within the luteal tissue. Blood flow within the midcycle CL initially increased (P < 0.05) at 0.5-2 h, decreased at 4 h to the same levels observed at 0 h, and then further decreased to a lower level from 8 h (P < 0.05) to 48 h (P < 0.001). Plasma P concentrations decreased (P < 0.05) from 4.7 +/- 0.5 ng/ml (0 h) to 0.6 +/- 0.2 ng/ml (24 h). The TAMXV and CL volume decreased at 8 h (P < 0.05) and further decreased (P < 0.001) from 12 to 24 h after PG injection, indicating structural luteolysis. These changes were not detected in the early CL, in which luteolysis did not occur. In the early CL, the blood flow gradually increased in parallel with the CL volume, plasma P concentration, and TAMXV from Day 4 to Day 6. The present results indicate that PGF(2 alpha) induces an acute blood flow increase followed by a decrease in the midcycle CL but not in the early CL. This transitory increase may trigger the luteolytic cascade. The lack of intraluteal vascular response to PG injection in the early CL appears to be directly correlated with the ability to be resistant to PG.  相似文献   

20.
The effect of prostaglandin F2 alpha (PGF2 alpha) on luteinizing hormone (LH) receptors, weight and progesterone content of corpora lutea (CL), and serum progesterone concentrations was studied in gilts. Fifteen gilts were hysterectomized between Days 9 to 11 of the estrous cycle. Twelve gilts were injected i.m. with 10 mg of PGF2 alpha and 3 with saline on Day 20. Ovaries were surgically removed from each of 3 gilts at 4, 8, 12 and 24 h following PGF2 alpha treatment and from the 3 control gilts 12 h following saline injection. Jugular blood samples for progesterone analysis were collected from all gilts at 0, 2 and 4 h following treatment and at 8, 12 and 24 h for gilts from which ovaries were removed at 8, 12 and 24 h, respectively. Mean serum progesterone and CL progesterone concentrations decreased within 4 h after PGF2 alpha treatment (P less than 0.05) and remained low through 24 h after treatment. The number of unoccupied LH receptors decreased by 4 h (P less than 0.05) and this trend continued through 24 h. There were no differences in luteal weight or affinity of unoccupied LH receptors of luteal tissue at 4, 8 12 and 24 h after PGF2 alpha when compared to luteal tissue from controls. These data indicate that during PGF2 alpha-induced luteolysis in the pig, luteal progesterone, serum progesterone concentrations and the number of LH receptors decrease simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号