首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular immortalization activity of cloned genes can be identified either in a colony-forming assa of transfected primary rat embryo fibroblasts or in a co-operation assay together with ras. However the demonstration of immortalization activities carried by cellular genes has not been reported. Here we establish that SV40 early genes integrated in genomic DNAs can be stably transferred into rat embryo fibroblasts and selected via their immortalization activity. Attempts to extend this assay to the identification of dominant genes putatively involved in the immortality of several other immortal post-crisis or tumor cells have been unsuccessful suggesting that the immortal phenotype can be brought about through different pathways.  相似文献   

2.
The cellular immortalization activity of cloned genes can be identified either in a colony-forming assa of transferred primary rat embryo fibroblasts or in a co-operation assay together with ras. However the demonstration of immortalization activities carried by cellular genes has not been reported. Here we establish that SV40 early genes integrated in genomic DNAs can be stably transferred into rat embryo fibroblasts and selected via their immortalization activity. Attempts to extend this assay to the identification of dominant genes putatively involved in the immortality of several other immortal post-crisis or tumor cells have been unsuccessful suggesting that the immortal phenotype can be brought about through different pathways.  相似文献   

3.
4.
The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.  相似文献   

5.
6.
We performed a genetic suppressor element screen to identify genes whose inhibition bypasses cellular senescence. A normalized library of fragmented cDNAs was used to select for elements that promote immortalization of rat embryo fibroblasts. Fragments isolated by the screen include those with homology to genes that function in intracellular signaling, cellular adhesion and contact, protein degradation, and apoptosis. They include mouse Tid1, a homologue of the Drosophila tumor suppressor gene l(2)tid, recently implicated in modulation of apoptosis as well as gamma interferon and NF-kappaB signaling. We show that GSE-Tid1 enhances immortalization by human papillomavirus E7 and simian virus 40 T antigen and cooperates with activated ras for transformation. Expression of Tid1 is upregulated upon cellular senescence in rat and mouse embryo fibroblasts and premature senescence of REF52 cells triggered by activated ras. In accordance with this, spontaneous immortalization of rat embryo fibroblasts is suppressed upon ectopic expression of Tid1. Modulation of endogenous Tid1 activity by GSE-Tid1 or Tid1-specific RNA interference alleviates the suppression of tumor necrosis factor alpha-induced NF-kappaB activity by Tid1. We also show that NF-kappaB sequence-specific binding is strongly downregulated upon senescence in rat embryo fibroblasts. We therefore propose that Tid1 contributes to senescence by acting as a repressor of NF-kappaB signaling.  相似文献   

7.
Similarities in the differentiation of mouse embryos and ES cell embryoid bodies suggest that aspects of early mammalian embryogenesis can be studied in ES cell embryoid bodies. In an effort to understand the regulation of cellular differentiation during early mouse embryogenesis, we altered the expression of the Pem homeobox-containing gene in ES cells. Pem is normally expressed in the preimplantation embryo and expressed in a lineage-restricted fashion following implantation, suggesting a role for Pem in regulating cellular differentiation in the early embryo. Here, we show that the forced expression of Pem from the mouse Pgk-1 promoter in ES cells blocks the in vitro and in vivo differentiation of the cells. In particular, embryoid bodies produced from these Pgk-Pem ES cells do not differentiate into primitive endoderm or embryonic ectoderm, which are prominent features of early embryoid bodies from normal ES cells. This Pgk-Pem phenotype is also different from the null phenotype, as embryoid bodies derived from ES cells in which endogenous Pem gene expression has been blocked show a pattern of differentiation similar to that of normal ES cells. When the Pgk-Pem ES cells were introduced into subcutaneous sites of nude mice, only undifferentiated EC-like cells were found in the teratomas derived from the injected cells. The Pem-dependent block of ES cell differentiation appears to be cell autonomous; Pgk-Pem ES cells did not differentiate when mixed with normal, differentiating ES cells. A block to ES cell differentiation, resulting from the forced expression of Pem, can also be produced by the forced expression of the nonhomeodomain region of Pem. These studies are consistent with a role for Pem in regulating the transition between undifferentiated and differentiated cells of the early mouse embryo.  相似文献   

8.
C L Goolsby  M Steiner  J Nemeth 《Cytometry》1991,12(8):748-756
In vitro investigation of the multistep neoplastic progression which occurs during transformation of human cells has been hindered by resistance of human cells to both immortalization and tumorigenicity (Mut. Res. 199; 273, 1988). Previously our laboratory established a cell line, HSF4-T12, by transfection of normal human foreskin fibroblasts with the plasmid pSV3-neo which contains the early genes of simian virus 40 (SV40). A multistep progression in karyotypic alterations and transformed phenotype occurred resulting in a neoplastic cell line that was immortal, transformed, and tumorigenic. We have examined changes in the SV40 proteins, large T (T-antigen) and small t (t-antigen) antigens, and in the cellular protein, p53, during progressive transformation of these cells. Total viral protein expression relative to total cellular protein increased following immortalization of HSF4-T12 as did the ratio of T-antigen to t-antigen. Interestingly, no significant change in DNA content accompanied immortalization. However, during the progressive in vitro transformation of HSF4-T12 which occurred primarily post-immortalization, DNA index increased to 1.6 but only small additional increases in T-antigen expression were seen. No consistent or critical role for t-antigen in development of the tumorigenic phenotype was found in this system.  相似文献   

9.
We describe the isolation and characterization of an immortal cell line derived by infection of rat neural crest cells with a v-myc-containing replication-defective retrovirus. This clonal cell line, called NCM-1, contains a majority cell population with antigenic and morphologic properties that suggest it may represent a peripheral glial progenitor. In conditioned or in serum-free medium, these NGF receptor-positive cells differentiate to an elongated, bipolar morphology resembling that of primary Schwann cells. This morphologic differentiation is prevented by TGF-beta 1, which also acts as a mitogen for the cells. The NCM-1 line is also able to generate clonal derivatives which have extinguished expression of most or all glial markers. Once generated, such cells are stable and do not revert to the glial phenotype. At least some of these cells have acquired sympathoadrenal progenitor-like properties, as shown by their capacity to coexpress tyrosine hydroxylase (TH) and neurofilament (NF) in response to basic FGF and dexamethasone. These data imply that the NCM-1 line contains self-renewing cells with the potential to generate precursors in at least two of the sublineages that normally develop from the neural crest. This in turn suggests that the process of immortalization may preserve at least some of the developmental properties characteristic of multipotential neural crest cells. NCM-1 cells may prove useful for the study of neural crest cell lineage segregation, Schwann cell differentiation, and the mechanisms controlling the initial induction of TH and NF gene expression.  相似文献   

10.
Normal human diploid fibroblasts (HF) have a limited life span, undergo senescence, and rarely, if ever, spontaneously immortalize in culture. Introduction of the gene for T antigen encoded by the DNA virus SV40 extends the life span of HF and increases the frequency of immortalization; however, immortalization requires both T-dependent and T-independent functions. We previously generated independent SV40-transformed non-immortal (pre-immortal) HF cell lines from which we then obtained immortal sublines as part of a multifaceted approach to identify functions responsible for immortalization. In this study we undertook a search for cellular mRNAs which are differentially expressed upon immortalization. A λcDNA library was prepared from a pre-immortal SV40-transformed HF (HF-C). We screened the library with a subtracted probe enriched for sequences present in HF-C and reduced in immortal AR5 cells. A more limited screen was also employed for sequences overexpressed in AR5 using a different strategy. Alterations in the level of mRNAs in AR5 encoding functions relevant to signal transduction pathways were identified; however, most cDNAs encoded novel sequences. In an effort to clarify which of the altered mRNAs are most relevant to immortalization, we performed Northern analysis with RNA prepared from three paired sets of independent pre-immortal and immortal (4 cell lines) SV40-transformants using eight cloned cDNAs which show reduced expression in AR5. Three of these were reduced in additional immortal cell lines as well; one, J4-4 (unknown function) is reduced in all the immortal cell lines tested; a second, J4-3 (possible PP2C type phosphatase) is reduced in 2 of the 3 matched sets; and a third, J2-2 (unknown function) is redu ced in 2 unrelated immortal cell lines. Although the roles of these genes are as yet unclear, their further analysis should extend our understanding of the molecular bases for immortalization. In particular, the patterns of expression of J4-4 and J4-3 strongly suggest that they are involved in the process of immortalization and/or can serve as target genes for assessing regulators of gene expression in this process. J. Cell. Physiol. 171:325–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Thein vitrolife span of human cells is under genetic control and limited. Immortalized cells, however, can be obtained at a low frequency following expression of the SV40 T antigen gene though the steps that lead to immortality are not well understood. p53 has been implicated in cell cycle regulation and evidence suggests it may have a role in controlling life span in rodent and human cells. In this study, we investigated whether allelic loss or mutation ofp53was an essential step during SV40 immortalization leading to the appearance of immortal cell lines. The gross structure of thep53gene was examined in a primary fibroblast cell strain (1BR.3) and two SV40-immortalized derivatives, 1BRMT1 and 1BRgn2. There was no evidence for allelic loss of thep53gene during immortalization. The primary cells and the immortal derivatives all expressed authenticp53mRNAs, though the immortal cell lines had higher levels of expression. Sequence analysis of exons 5–8 did not detect mutations associated with the immortal phenotype. These data are consistent with SV40 immortalization being independent of genetic changes inp53.  相似文献   

12.
We have exploited a cross-species expression screen to search for cellular immortalizing activities. A newt blastemal cDNA expression library was transfected into rat embryo fibroblasts and immortal cell lines were selected. This identified a 1-kb cDNA fragment which has a low representation in the cDNA library and is derived from the 3′-UTR of an α-glucosidase-related mRNA. Expression of this sequence in rat embryo fibroblasts has shown that it is active in promoting colony formation and immortalization. It is also able to cooperate with an immortalization-defective deletion mutant of SV40 T antigen, indicating that it can exert its growth-stimulatory activity in the pathway activated by a viral immortalizing oncogene. This is the first example of an immortalizing activity mediated by an RNA sequence, and further analysis of its mechanism should provide new insights into senescence and immortalization.  相似文献   

13.
Mouse embryonic stem cells have an unlimited lifespan in cultures if they are prevented from differentiating. After differentiating, they produce cells which divide only a limited number of times. These changes seen in cultures parallel events that occur in the developing embryo, where immortal embryonic cells differentiate and produce mortal somatic ones. The data strongly suggest that differentiation initiates senescence, but this view entails additional assumptions in order to explain how the highly differentiated sexual gametes manage to remain potentially immortal. Cells differentiate by blocking expression from large parts of their genome and it is suggested that losses or gains of genetic totipotency determine cellular lifespans. Cells destined to be somatic do not regain totipotency and senesce, while germ-line cells regain complete genome expression and immortality after meiosis and gamete fusions. Losses of genetic totipotency could induce senescence by lowering the levels of repair and maintenance enzymes.  相似文献   

14.
IMR-90 normal human diploid fibroblasts, transfected with a steroid inducible mouse mammary tumor virus-driven simian virus 40 T antigen, were carried through crisis to yield an immortal cell line. Growth was dependent on the presence of the inducer (dexamethasone) during both the extended precrisis life span of the cells and after immortalization. After dexamethasone removal, immortal cells divided once or twice and then accumulated in G1. These results are best explained by a two-stage model for cellular senescence. Mortality stage 1 (M1) causes a loss of mitogen responsiveness and arrest near the G1/S interface and can be bypassed or overcome by the cellular DNA synthesis-stimulating activity of T antigen. Mortality stage 2 (M2) is an independent mechanism that is responsible for the failure of cell division during crisis. The inactivation of M2 is a rare event, probably of mutational origin in human cells, independent of or only indirectly related to the expression of T antigen. Under this hypothesis, T-antigen-immortalized cells contain an active but bypassed M1 mechanism and an inactivated M2 mechanism. These cells are dependent on the continued expression of T antigen for the maintenance of immortality for the same reason that precrisis cells are dependent on T antigen for growth: both contain an active M1 mechanism.  相似文献   

15.
Immortalization of rodent cells by oncogenes is a complex biological process which involves the abnormal regulation of genes who control cellular proliferation. The role of the cell cycle control genes cdc2, cdc25 and cyclin A in the maintenance of immortalization and in growth arrest was examined in the tsa14, a SV40 T antigen rat embryonic fibroblast conditional for growth cell line. Analysis of RNA expression showed minimal levels of cdc2 mRNA in both proliferating and growth-arrested tsa14 cells. In contrast, cyclin A mRNA was found downregulated in growth-arrested tsa14 cells, as well as in senescent primary rat embryonic fibroblasts (REFS). The ability of cdc2, or cdc25, or cyclin A genes to maintain the tsa14 immortal phenotype was also examined by electroporations of these genes into the tsa14 cells. Clones over-expressing the electroporated cdc2, or cdc25, or cyclin A, or combinations of these genes growth arrested at the non-permissive conditions similar to controls, thereby suggesting that the expression of these genes alone is insufficient for tsa14 maintenance of immortalization.  相似文献   

16.
17.
18.
19.
20.
The complex process of cell immortalization and transformation is likely to involve the inactivation of growth regulatory genes. Mutations (deletions, missense mutations) in the p53 gene are the most frequently observed genetic alteration in human tumors, making p53 a candidate for a cellular protein involved in the control of cell growth. Two recent studies have examined the role of p53 in immortalization and tumorigenesis. In the first study, p53 expression was examined in both mortal and immortal chick embryo fibroblasts. All mortal clones expressed p53 but the loss of wild-type p53 expression was observed in every immortal cell line examined. In the second study, a line of mice carrying two null p53 alleles has been created and characterized. Although these mice develop normally, they show a predisposition to develop a variety of neoplasms at an early age (< 6 months). Although it is unclear whether p53 regulates the same, different, or overlapping pathways in the two experimental systems, these data demonstrate that p53 function is critical for the maintenance of normal growth control and support the current classification of p53 as a growth suppressive or tumor suppressor gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号