首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP is a key regulator of melatonin production in the chick pineal gland. Agents that raise cyclic AMP levels (such as forskolin), or cyclic AMP analogues (such as 8-bromocyclic AMP), increase melatonin synthesis and release, whereas agents that lower cyclic AMP levels (including light) decrease melatonin synthesis and release. A circadian oscillator in these cells also raises and lowers melatonin output. We have been investigating the relationships between cyclic AMP and the circadian pacemaker in the regulation of melatonin production. In the chick pineal (unlike certain neuronal systems), the weight of the evidence indicates that cyclic AMP is not on an entrainment pathway to the circadian pacemaker. Instead, cyclic AMP appears to act downstream from the pacemaker. The pacemaker might itself act directly through cyclic AMP, regulating melatonin content by raising and lowering cyclic AMP levels. If this were the case, and if the effects of cyclic AMP levels on melatonin output are saturable (as they must be), then, in the face of such saturating levels of cyclic AMP, the pacemaker should no longer raise or lower melatonin output. To test this prediction, maximally effective concentrations of forskolin and 8-bromocyclic AMP were determined. Both agents markedly increased melatonin output. After 36 hr, cells were refractory to additional stimulation of melatonin output by addition of both agents together, or by higher concentrations of forskolin (although cyclic AMP levels could still be raised further). Nonetheless, the circadian pacemaker continued to raise and lower melatonin output: The rhythm persisted in the face of saturating levels of cyclic AMP. It is therefore suggested that the circadian pacemaker in chick pineal cells acts with, not through, cyclic AMP to regulate melatonin synthesis. Cyclic AMP and the pacemaker act synergistically to regulate serotonin N-acetyltransferase activity and the melatonin rhythm, with cyclic AMP mediating acute effects and amplitude regulation.  相似文献   

2.
3.
4.
5.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

6.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

7.
Arylalkylamine N-acetyltransferase controls daily changes in melatonin production by the pineal gland and thereby plays a unique role in biological timing in vertebrates. Arylalkylamine N-acetyltransferase is also expressed in the retina, where it may play other roles in addition to signaling, including neurotransmission and detoxification. Large changes in activity reflect cyclic 3',5'-adenosine monophosphate-dependent phosphorylation of arylalkylamine N-acetyltransferase, leading to formation of a regulatory complex with 14-3-3 proteins. This activates the enzyme and prevents proteosomal proteolysis. The conserved features of regulatory systems that control arylalkylamine N-acetyltransferase are a circadian clock and environmental lighting.  相似文献   

8.
In the chicken pineal gland, norepinephrine, released at sympathetic nerve endings, plays a role in synchronizing the circadian rhythm of melatonin synthesis. This effect appears to be exerted via an adrenergic inhibition of arylalkylamine N-acetyltransferase, the melatonin rhythm-generating enzyme. The present study indicates that the nighttime peak of N-acetyltransferase activity developed by organ-cultured chick pineal glands is inhibited by adrenergic agonists with a potency order characterizing alpha 2-adrenergic receptors: UK 14,304 greater than clonidine greater than alpha-methylnorepinephrine = epinephrine greater than cirazoline greater than phenylephrine greater than isoproterenol. The mechanism of this alpha 2-adrenergic response was further analyzed in organ cultures, by studying the ability of clonidine to block the cyclic AMP-dependent and the depolarization-dependent stimulations of N-acetyltransferase activity. Clonidine prevented the rise in N-acetyltransferase activity evoked by the adenylate cyclase activators forskolin and cholera toxin or by the phosphodiesterase inhibitor Ro 20,1724. The stimulatory effect of dibutyryl cyclic AMP was also blocked by clonidine. Activation of pineal alpha 2-adrenergic receptors effectively prevented the stimulation of N-acetyltransferase by depolarizing concentrations of KCl. The possibility that the alpha 2-adrenergic effect might be exerted at a step distal to cyclic AMP production is discussed.  相似文献   

9.
The avian pineal gland, like that of mammals, displays a striking circadian rhythm in the synthesis and release of the hormone melatonin. However, the pineal gland plays a more prominent role in avian circadian organization and differs from that in mammals in several ways. One important difference is that the pineal gland in birds is relatively autonomous. In addition to making melatonin, the avian pineal contains photoreceptors and a circadian clock (thus, an entire circadian system) within itself. Furthermore, avian pineals retain their circadian properties in organ or dispersed cell culture, making biochemical components of regulatory pathways accessible. Avian pinealocytes are directly photosensitive, and novel candidates for the unidentified photopigments involved in the regulation of clock function and melatonin production, including melanopsin, pinopsin, iodopsin, and the cryptochromes, are being evaluated. Transduction pathways and second messengers that may be involved in acute and entraining effects, including cyclic nucleotides, calcium fluxes, and protein kinases, have been, and continue to be, examined. Moreover, several clock genes similar to those found in Drosophila and mouse are expressed, and their dynamics and interactions are being studied. Finally, the bases for acute and clock regulation of the key enzyme in melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT), are described. The ability to study entrainment, the oscillator itself, and a physiological output in the same tissue at the same time makes the avian pineal gland an excellent model to study the bases and regulation of circadian rhythms.  相似文献   

10.
Conclusion The circadian rhythm of melatonin synthesis in the pineal glands of various species has been summarized. The night-time elevation of melatonin content is in most if not all cases regulated by the change of N-acetyltransferase activity. In mammals, the N-acetyltransferase rhythm is controlled by the central nervous system, presumably by suprachiasmatic nuclei in hypothalamus through the superior cervical ganglion. In birds, the circadian oscillator that regulates the N-acetyltransferase rhythm is located in the pineal glands. The avian pineal gland may play a biological clock function to control the circadian rhythms in physiological, endocrinological and biochemical processes via pineal hormone melatonin.  相似文献   

11.
The photosensitive teleost pineal organ exhibits a daily rhythm in melatonin production. In most teleosts, including the pike, this is driven by an endogenous pineal clock. An exception is the trout, in which the pineal melatonin rhythm is a direct response to darkness. This fundamental difference in the regulation of melatonin production in two closely related species provides investigators a novel opportunity to study the molecular mechanisms of vertebrate clock function. We have studied the circadian regulation of mRNA encoding two melatonin synthesis enzymes by Northern blot analysis. These two enzymes are serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, and tryptophan hydroxylase (TPH), the first enzyme in melatonin synthesis. A clock controls expression of both AA-NAT and TPH mRNAs in the pineal organ of pike, but not that of trout, in which the levels of these mRNAs are tonically elevated. A parsimoneous explanation of this is that a single circadian system regulates the expression of both AA-NAT and TPH genes in most teleosts, and that in trout this system has been disrupted, perhaps by a single mutation.  相似文献   

12.
Abstract: The level of 35S incorporation into tryptophan hydroxylase (TPH) shows a circadian rhythm in cultured chick pineal cells. The TPH oscillation peaks in the early subjective night, persists in constant darkness, and can be phase shifted by light, in parallel to the effect of these treatments on melatonin synthesis. Using quantitative two-dimensional polyacrylamide gel electrophoresis, we have examined the regulation of TPH by agents known to affect melatonin synthesis in the chick pineal. We report here that 35S incorporation into TPH is induced by cyclic AMP and calcium, and partially inhibited by acute exposure to light. Cyclic AMP also causes a proportional increase in the radiolabeling of one of the TPH isoforms and a concomitant decrease in another isoform, possibly reflecting a change in the phosphorylation state of TPH. This effect is reversed by treatments known to reduce intracellular cyclic AMP levels in the chick pineal. Cyclic AMP thus appears to be involved in both translational and posttranslational processes regulating the expression of TPH in chick pineal cells.  相似文献   

13.
Norepinephrine is known to play a role in regulating the circadian rhythms of serotonin N-acetyltransferase activity and melatonin formation in the chick pineal gland. We have recently demonstrated that the cultured chick pineal exhibits a circadian rhythm in the incorporation of thymidine. In this study we show that this latter rhythm is not subject to adrenergic control.  相似文献   

14.
Regulation and possible role of serotonin N-acetyltransferase in the retina   总被引:1,自引:0,他引:1  
The activity of retinal serotonin N-acetyltransferase (NAT) (arylamine acetyltransferase, EC 2.3.1.5), the penultimate enzyme in melatonin biosynthesis, exhibits properties of a circadian rhythm comparable to that seen in the pineal gland. Using an eye cup preparation we have found that circadian properties persist in vitro, which indicates that an endogenous circadian oscillator controlling NAT is present in the eye. Nighttime increases in NAT activity are suppressed by light, protein synthesis inhibitors, and catecholamines. In light, NAT activity is induced by conditions expected to increase intracellular levels of cyclic AMP (cAMP). This suggests that catecholamines and cAMP are normally involved in the regulation of NAT. Circadian indoleamine metabolism may play a role in the control of rhythmic photoreceptor metabolism as evidenced by the observation that melatonin and related compounds are potent activators of disk shedding.  相似文献   

15.
16.
17.
Melatonin is secreted from the pineal gland in a circadian manner. It is well established that the synthesis of melatonin shows a diurnal rhythm reflecting a daily change in serotonin N-acetyltransferase (NAT) activity, and the overall secretion of melatonin requires a cellular release process, which is poorly understood. To investigate the possible involvement of Golgi-derived vesicles in the release, we examined the effect of brefeldin A (BFA), a reversible inhibitor of Golgi-mediated secretion, on melatonin secretion of cultured chick pineal cells. We show here that treatment with BFA completely disassembles the Golgi apparatus and reduces melatonin secretion. In more detailed time course experiments, however, the inhibition of melatonin secretion is only observed after the removal of BFA in parallel with the reassembly of the Golgi apparatus. This inhibition of melatonin secretion is not accompanied by accumulation of melatonin in the cells. These observations indicate that chick pineal melatonin is released independently of the Golgi-derived vesicles, and suggest inhibition of melatonin synthesis after the removal of BFA. By measuring the activities and mRNA levels of melatonin-synthesizing enzymes, we found that the removal of BFA specifically inhibits NAT activity at the protein level. On the other hand, BFA causes no detectable phase-shift of the chick pineal oscillator regulating the circadian rhythm of melatonin secretion. The results presented here suggest that the Golgi-mediated vesicular transport is involved in neither the melatonin release nor the time-keeping mechanism of the circadian oscillator, but rather contributes to the regulation of NAT activity.  相似文献   

18.
19.
20.
—When pineal glands of 10–12-day-old chicks were organ-cultured in darkness, serotonin N-acetyltransferase activity was low during the daytime, increased at midnight and then decreased to the daytime level the next morning. The pattern of increase and decrease of enzyme activity in cultured pineal glands was comparable to the circadian rhythm of N-acetyltransferase activity in vivo. When pineal glands were kept at a low temperature for 5 h prior to culture, the phase of autonomous rhythm of enzyme activity was delayed. When chicken pineal glands were cultured during the daytime for 6 h, derivatives of adenosine 3′, 5′-monophosphate (cyclic AMP), cholera toxin, a high concentration of KCl and phosphodiesterase inhibitors increased N-acetyltransferase activity 3–7-fold, indicating an involvement of cyclic AMP in the regulation of N-acetyltransferase activity in chicken pineal gland as has been shown in rat pineal gland. When pineal glands were cultured at night in darkness, cholera toxin or a high KCl did not enhance the night-time increase of the enzyme activity. Derivatives of cyclic AMP or phosphodiesterase inhibitors enhanced the autonomous night-time increase of N-acetyltransferase activity in an additive or more than additive manner in cultured pineal glands. These observations suggest that adenylate cyclase of pinealocytes is inactive during daytime, but is activated at night in darkness, which is transduced to the synthesis of N-acetyltransferase molecules. Catecholamines suppressed the basal level and the nocturnal increase of N-acetyltransferase activity via α-adrenergic receptor. The nocturnal increase of enzyme activity was prevented by cycloheximide or actinomycin D. Cocaine, which stabilizes cell membrane potential or light exposure, blocked the nighttime increase of N-acetyltransferase activity in cultured chicken pineal glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号