首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of weed control practices and fertilisation on weed flora and crop yield were evaluated in crop edges of barley fields in northeastern Spain. The study was carried out in four organic and four conventional barley fields. In each field, four permanent plots were delimited at the crop edge, and fertilisation and weed control treatments in a factorial design were applied over 3 years. Weed composition and the aboveground biomass of weeds and barley were recorded before the crop harvest in the first and the third year. We found relatively low values of species richness per field, as well as low values of weed biomass, especially in the organic crop edges (3.9% of total biomass). Weeds were significantly reduced by herbicide applications on conventional fields and were not affected by weed harrowing on organic fields or fertilisation. These results demonstrate that specific measures are needed to enhance biodiversity at crop edges both in organic and conventional fields. Our results also suggest that under Mediterranean conditions and among impoverished weed communities, limiting the use of herbicides is crucial to enhancing arable diversity and that, contrary to findings found in previous studies in temperate climates, fertilisation and weed harrowing have little effect on weeds.  相似文献   

2.
Effects of genetically modified herbicide-tolerant (GMHT) and conventional crop management on invertebrate trophic groups (herbivores, detritivores, pollinators, predators and parasitoids) were compared in beet, maize and spring oilseed rape sites throughout the UK. These trophic groups were influenced by season, crop species and GMHT management. Many groups increased twofold to fivefold in abundance between early and late summer, and differed up to 10-fold between crop species. GMHT management superimposed relatively small (less than twofold), but consistent, shifts in plant and insect abundance, the extent and direction of these effects being dependent on the relative efficacies of comparable conventional herbicide regimes. In general, the biomass of weeds was reduced under GMHT management in beet and spring oilseed rape and increased in maize compared with conventional treatments. This change in resource availability had knock-on effects on higher trophic levels except in spring oilseed rape where herbivore resource was greatest. Herbivores, pollinators and natural enemies changed in abundance in the same directions as their resources, and detritivores increased in abundance under GMHT management across all crops. The result of the later herbicide application in GMHT treatments was a shift in resource from the herbivore food web to the detritivore food web. The Farm Scale Evaluations have demonstrated over 3 years and throughout the UK that herbivores, detritivores and many of their predators and parasitoids in arable systems are sensitive to the changes in weed communities that result from the introduction of new herbicide regimes.  相似文献   

3.
Rare weeds are currently under pressure due to intensifying arable management practices, and as a consequence of climate change, these practices will likely become even more intensive, together with a greater uniformity of land use. As a result, ecological stresses will increase for most species of rare weeds, in some cases leading to their further decline or even extinction. Moreover, climate change will alter the suitability of the environment for many plants, since average temperatures are predicted to increase and precipitation extremes to become more common. For most arable weed species it is unclear, whether the anticipated changes in environmental conditions are disadvantageous or beneficial. Little is known about specific biological responses of rare weeds to climate changes, and this study attempts to close some of these knowledge gaps. Here, the rare arable weed Lithospermum arvense and the endangered arable species Scandix pecten-veneris were investigated with regard to the effects of higher temperature and different crop densities on flowering time, shoot development, plant height, dry mass and seed production. Semi-field experiments were conducted with winter wheat crop for 3 years, involving 48 climate cages, in which every second was a variant of warmer temperature and contrasting crop density. We observed that S. pecten-veneris flowered earlier under warmer conditions and had fewer seeds and less biomass in the dense wheat crop compared to control conditions, while L. arvense grew taller, it produced fewer seeds in the high density crop. We suggest that such data concerning the biological responses of weeds can improve the precision of bioclimatic distribution models. Finally, we discuss strategies, such as relocation or non-intrusive management practices, for preventing further disappearances of rare arable weeds. Our results should be of considerable interest for the fields of plant ecology, biodiversity research and conservation.  相似文献   

4.
农作物抗除草剂遗传工程研究进展   总被引:2,自引:0,他引:2  
控制杂草提高农作物产量是农业生产中共同面临的问题,发展抗除草剂农作物将是最经济最方便控制杂草的技术。由于对除草剂的作用模式和除草剂代谢途径的了解,弄清了除草剂的关键靶酶及其基因,因此分离除草剂靶酶基因,克隆能解毒除草剂的酶基因,通过转化技术可获得抗除草剂农作物,大量的抗除草剂转基因农作物大田试验表明,将最有希望在2000年进入市场。  相似文献   

5.
Responses of key invertebrates within Farm Scale Evaluations (FSEs) of maize reflected advantageous effects for weeds under genetically modified herbicide-tolerant (GMHT) management. Triazine herbicides constitute the main weed control in current conventional systems, but will be withdrawn under future EU guidelines. Here, we reappraise FSE data to predict effects of this withdrawal on invertebrate biodiversity under alternative management scenarios. Invertebrate indicators showed remarkably consistent and sensitive responses to weed abundance. Their numbers were consistently reduced by atrazine used prior to seedling emergence, but at reduced levels compared to similar observations for weeds. Large treatment effects were, therefore, maintained for invertebrates when comparing other conventional herbicide treatments with GMHT, despite reduced differences in weed abundance. In particular, benefits of GMHT remained under comparisons with best estimates of future conventional management without triazines. Pitfall trapped Collembola, seed-feeding carabids and a linyphiid spider followed closely trends for weeds and may, therefore, prove useful for modelling wider biodiversity effects of herbicides. Weaker responses to triazines applied later in the season, at times closer to the activity and capture of invertebrates, suggest an absence of substantial direct effects. Contrary responses for some suction-sampled Collembola and the carabid Loricera pilicornis were probably caused by a direct deleterious effect of triazines.  相似文献   

6.
7.
Factors determining changes in species composition of arable field weed vegetation in the northeastern part of the Czech Republic were studied. Gradsect sampling, i.e. a priori stratified selection of sampling sites, was used for the field research. Using this method, a data set of 174 vegetation plots, covering a whole range of basic environmental characteristics in the study area, was compiled in 2001–2003. A set of environmental variables (altitude, annual precipitation, mean annual temperature, soil type, soil pH and crop type) together with date of sampling was obtained for each plot. Ordination methods were used to determine the effects of variables on arable weed composition. For each variable, the gross and net effect on weed species composition were calculated. All variables considered in this study had a significant effect on weed species composition and explained 7.25% of the total variation in species data. Major changes in weed species composition in the study area were associated with different crop types. The second most important gradient in the variability of weed vegetation in the study area was associated with altitudinal and climatic changes followed by seasonal changes and different soil types and pH. Our results show that on a regional scale, the relative importance of different crop types and their associated management on changes in arable weed species composition is higher than the relative importance of climatic variables. The relative importance of climatic variables decreases with their decreasing length of gradient.  相似文献   

8.
Question: What are the main broad‐scale spatial and temporal gradients in species composition of arable weed communities and what are their underlying environmental variables? Location: Czech Republic and Slovakia. Methods: A selection of 2653 geographically stratified relevés sampled between 1954–2003 was analysed with direct and indirect ordination, regression analysis and analysis of beta diversity. Results: Major changes in weed species composition were associated with a complex gradient of increasing altitude and precipitation and decreasing temperature and base status of the soils. The proportion of hemicryptophytes increased, therophytes and alien species decreased, species richness increased and beta diversity decreased with increasing altitude. The second most important gradient of weed species composition was associated with seasonal changes, resulting in striking differences between weed communities developed in spring and summer. In summer, weed communities tended to have more neophytes, higher species richness and higher beta diversity. The third gradient reflected long‐term changes in weed vegetation over past decades. The proportion of hemicryptophytes and neophytes increased, while therophytes and archaeophytes decreased, as did species richness over time. The fourth gradient was due to crop plants. Cultures whose management involves less disturbances, such as cereals, harboured less geophytes and neophytes, and had higher species richness but lower beta diversity than frequently disturbed cultures, such as root crops. Conclusions: Species composition of Central European weed vegetation is mainly influenced by broad‐scale climatic and edaphic factors, but its variations due to seasonal dynamics and long‐term changes in agricultural management are also striking. Crop plants and crop‐specific management affect it to a lesser, but still significant extent.  相似文献   

9.
10.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

11.
【背景】转基因抗除草剂水稻种植将导致连年连续使用单一目标除草剂,势必会影响杂草群落结构的变化,但其变化规律至今还不十分明确。【方法】于2011~2013年,连续3年在直播种植抗草铵膦转基因Bar68-1水稻田中,使用灭生性除草剂草铵膦,持续观察期间杂草群落结构变化,并与常规选择性除草剂丙草胺—苄嘧磺隆(丙·苄)的应用情况进行对比,以揭示由于种植转基因抗除草剂水稻而使用单一除草剂对稻田杂草群落结构的影响。【结果】草铵膦和丙·苄连续使用后,杂草的物种丰富度和总杂草密度均逐年显著降低。随草铵膦使用年限增加,控草效果持续提高并达到优良水平,而常规选择性除草剂丙·苄的长期使用,致使多年生杂草双穗雀稗演替为群落的优势种,杂草密度呈逐年增加的趋势,导致生物多样性指数显著降低。【结论与意义】抗除草剂转基因水稻种植,在抗性杂草演化之前,不会因单一灭生性除草剂的应用而导致杂草群落迅速朝不良方向演替。长期的群落演替还需要进一步研究观察。  相似文献   

12.
Over the past 40 years there have been marked shifts in arable farmland management that are widely believed to have had a considerable impact on flowering plants and invertebrates and the small mammals and birds that rely upon them. It is not yet possible to predict the dynamics of plants and invertebrates either with past or future changes in farmland management. This study investigates whether a basic invertebrate classification, formed of broad trophic groups, can be used to describe interactions between invertebrates and their resource plants and evaluate management impacts for genetically modified, herbicide-tolerant (GMHT) and conventional herbicide management in both spring- and winter-sown oilseed rape. It is argued that the analyses validate trophic-based approaches for describing the dynamics of invertebrates in farmland and that linear models might be used to describe the changes in invertebrate trophic group abundance in farmland when driven by primary producer abundance or biomass and interactions between invertebrates themselves. The analyses indicate that invertebrate dynamics under GMHT management are not unique, but similar to conventional management occurring over different resource ranges, and that dynamics differed considerably between spring- and winter-sown oilseed rape. Thus, herbicide management was of much lower impact on trophic relationships than sowing date. Results indicate that invertebrate dynamics in oilseed rape are regulated by a combination of top-down and bottom-up trophic processes.  相似文献   

13.
We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.  相似文献   

14.
Invasive aquatic weeds are managed with herbicides to reduce their negative impacts on waterways in many areas, including the California Delta Region. Herbicides create a dynamic environment of living and decomposing plant matter that could affect larval mosquitoes and other invertebrates, such as their predators and competitors. Our objective was to compare the number of larval mosquitoes in water or water hyacinth, before and after an herbicide treatment. We created replicated pond mesocosms with water hyacinth, water hyacinth treated with glyphosate and an oil adjuvant, open water, and water with glyphosate plus adjuvant. We sampled for larval mosquitoes and other aquatic invertebrates. Before herbicide addition, there was a trend for more larval mosquitoes in open water tanks than in tanks with water hyacinth. Herbicide application resulted in an immediate decrease of larval mosquitoes. As decay progressed, larval mosquitoes became most abundant in mesocosms with herbicide‐treated hyacinth and very few larval mosquitoes were found in other habitat treatments. Although the numbers of predatory and competitor insects had some variation between treatments, no clear pattern emerged. This information on how invasive weed management with herbicides affects larval mosquitoes will allow control practices for larval mosquitoes and invasive weeds to be better integrated.  相似文献   

15.
The use of herbicides to control weeds, particularly large invasions, has now become an essential management tool in many ecological restoration projects. The herbicide glyphosate is routinely used to control the invasive weed, Grey Willow (Salix cinerea), within New Zealand wetlands. However, little is known about the effects of glyphosate on invertebrates. We determine the short‐term effects of glyphosate on the abundance and composition of the nontarget canopy invertebrate community in wetlands invaded by Grey Willow in New Zealand. Initially, the application of glyphosate and a surfactant showed no detectable effect on the canopy invertebrates examined in this study. However, 27 days after herbicide application, significant Grey Willow canopy loss caused dramatic decreases in the abundance of invertebrates in the glyphosate‐treated plots compared with the unsprayed plots. Invertebrates appeared to be sensitive to changes in vegetation structure, such as canopy loss. These results agree with previous studies that have shown that the negative impacts of glyphosate on invertebrate communities are related to indirect effects via habitat modification as the herbicide‐treated vegetation dies. From a terrestrial invertebrate perspective, this study suggests that the use of glyphosate herbicide is suitable for the control of invasive weeds within wetland restoration projects as it appears to have negligible impact on the canopy invertebrate assemblage.  相似文献   

16.
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.  相似文献   

17.
Question: How do local and landscape management contribute to weed diversity in Hungarian winter cereal fields? Location: Central Hungary. Methods: Vascular plants were sampled in 18 winter cereal fields along an intensification gradient according to nitrogen fertilization, in the first cereal rows (edge) and in the interior part of the fields. Weed species were divided into groups according to their residence time in Central Europe (native species, archaeophytes, neophytes) and nitrogen preference (low to medium, LMNP, and high, HNP species). The percentage of semi‐natural habitats was calculated in the 500 m radius circle. Effects of fertilizer use, transect position and semi‐natural habitats were estimated by general linear mixed models. Results: We recorded 149 weed species. Fertilizer had a negative impact on the species richness of archaeophytes and LMNP species, and on the cover of native weeds. There was greater species richness and weed cover at the edge of the fields than in the centre. A higher percentage of seminatural habitats around the arable fields resulted in greater total species richness, especially of archaeophytes and LMNP species. We found an interaction between the percentage of semi‐natural habitats and transect position for species richness of archaeophytes and LMNP species. Conclusions: Reduced use of fertilizers and a high percentage of semi‐natural habitats would support native and archaeophyte weed diversity even in winter cereal fields, while large amounts of fertilizer may promote invasion of neophytes. However, the beneficial effect of the semi‐natural habitats and greater species pool on the arable flora may prevail only in the crop edges.  相似文献   

18.
农田杂草生态位研究的意义及方法探讨   总被引:28,自引:5,他引:23  
郭水良  李扬汉 《生态学报》1998,18(5):496-503
农田除草剂长期单一使用引起杂草种群的演变,增加了化学除草难度。预测除草剂作用下农田杂草群落的演变是当前迫切要求解决的问题。研究农田杂草生态位,揭示霜草种间生态心关系,结合杂草对除草剂敏感性资料,能够预测这种演变。本文以浙中油菜田为例,对该地区油菜田24种主要杂草的姓进行了七级目测,计测了它们的生态位宽度和生态位重叠值;汉生态位重叠值为指标,用极点排序和图论聚类分析中的最小生成树法,作出了反映杂草生  相似文献   

19.
The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.  相似文献   

20.
Rice cultivars resistant to broad‐spectrum herbicides have been developed and their commercial release is imminent, especially for imidazolinone and glufosinate resistant varieties in the USA and Latin America. Glyphosate‐resistant rice should follow within a few years. Rice growers throughout the world could benefit from the introduction of herbicide‐resistant rice cultivars that would allow in‐crop, selective control of weedy Oryza species. Other perceived benefits are the possibility to control ‘hard‐to‐kill’ weed species and weed populations that have already evolved resistance to herbicides currently used in rice production, especially those of the Echinochloa species complex. Weed management could also be improved by more efficient post‐emergence control. Introduction of herbicide resistant rice could also bring areas heavily infested with weedy rice that have been abandoned back to rice production, allow longer term crop rotations, reduce consumption of fossil fuels, promote the replacement of traditional chemicals by more environmentally benign products, and provide more rice grain without adding new land to production. There are also concerns, however, about the impact of releasing herbicide‐resistant rice on weed problems. Of most concern is the possibility of rapid transfer of the resistance trait to compatible weedy Oryza species. Development of such herbicide resistant weedy rice populations would substantially limit the chemical weed management options for farmers. Herbicide‐resistant rice volunteers also could become problematic, and added selection pressure to weed populations could aggravate already serious weed resistance problems. Because of the risk of weedy Oryza species becoming resistant to broad‐spectrum herbicides, mitigating measures to prevent gene flow, eventually attainable by both conventional breeding and molecular genetics, have been proposed. With commercialisation of the first herbicide resistant varieties planned for 2001, these mitigating measures will not be available for use with this first generation of herbicide resistant rice products. Release of herbicide resistant rice should depend on a thorough risk assessment especially in areas infested with con‐specific weedy rice or intercrossing weedy Oryza species. Regulators will have to balance risks and benefits based on local needs and conditions before allowing commercialisation of herbicide‐resistant rice varieties. If accepted, these varieties should be considered as components of integrated weed management, and a rational herbicide use and weedy rice control should be promoted to prevent losing this novel tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号